版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市东方中学2024年八年级数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.点在反比例函数的图象上,则下列各点在此函数图象上的是().A. B. C. D.2.如图,若要用“”证明,则还需补充的条件是()A. B.或C.且 D.3.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则()A. B. C. D.4.下列各式成立的是()A. B.=3C. D.=35.已知多边形的内角和等于外角和,这个多边形的边数为()A. B. C. D.6.若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C.且 D.且7.如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是()A.OC=OD B.∠CPO=∠DPOC.PC=PD D.PC⊥OA,PD⊥OB8.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,49.根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是()A.二次函数图像的对称轴是直线x=1;B.当x>0时,y<4;C.当x≤1时,函数值y是随着x的增大而增大;D.当y≥0时,x的取值范围是-1≤x≤3时.10.如图,点是矩形的对角线的中点,点是的中点.若,则四边形的周长是()A.7 B.8 C.9 D.1011.如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)()A.10cm B.12m C.14cm D.15cm12.在平面直角坐标系中,点向上平移2个单位后的对应点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.已知函数的图像经过点A(1,m)和点B(2,n),则m___n(填“>”“<”或“=”).14.如图,中,,,点为边上一动点(不与点、重合),当为等腰三角形时,的度数是________.15.“Iamagoodstudent.”这句话的所有字母中,字母“a”出现的频率是______16.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________17.多项式与多项式的公因式分别是______.18.八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.三、解答题(共78分)19.(8分)已知:直线y=2x+6、直线y=﹣2x﹣4与y轴的交点分别为A点、B点.(1)请直接写出点A、B的坐标;(2)若两直线相交于点C,试求△ABC的面积.20.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)请直接写出不等式kx+b﹣3x>0的解集.(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.21.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)152025……y(件)252015……22.(10分)某校学生在“蓝天下的至爱”帮困活动中,纷纷拿零花钱,参加募捐活动.甲班学生共募捐840元,乙班学生共募捐1000元,乙班学生的数比甲班学生的人均捐款数多5元,且人数比甲班少2名,求甲班和乙班学生的人数.23.(10分)如图,直线与直线相交于点.(1)求,的值;(2)根据图像直接写出时的取值范围;(3)垂直于轴的直线与直线,分别交于点,,若线段长为2,求的值.24.(10分)某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:)170~174175~179180~184185~189甲车间1342乙车间0622(1)分别计算甲、乙两车间生产的零件直径的平均数;(2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内?(3)若该零件的直径在的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?25.(12分)在矩形中,点在上,,,垂足为.(1)求证:;(2)若,且,求.26.中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:(1)求本次抽样调查的人数;(2)请补全两幅统计图;(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
参考答案一、选择题(每题4分,共48分)1、A【解析】
用待定系数法确定反比例函数的解析式,再验证选项中的点是否满足解析式即可,若满足函数解析式,则在函数图像上.【详解】解:将点代入,∴,∴,∴点在函数图象上,故选:A.【点睛】本题考查了反比例函数解析式的求法及根据解析式确定点在函数图形上,会求反比例函数的解析式是解题的关键.2、B【解析】
根据题意可知只要再有一条直角边对应相等即可通过“HL”证明三角形全等.【详解】解:已知△ABC与△ABD均为直角三角形,AB=AB,若或,则(HL).故选B.【点睛】本题主要考查全等三角形的特殊判定,解此题的关键在于熟练掌握其知识点.3、B【解析】
根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.4、D【解析】分析:各项分别计算得到结果,即可做出判断.详解:A.原式=,不符合题意;B.原式不能合并,不符合题意;C.原式=,不符合题意;D.原式=|﹣3|=3,符合题意.故选D.点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.5、B【解析】
设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【详解】解:设多边形的边数为n,根据题意列方程得,
(n−2)•180°=360°,
∴n−2=2,
解得:n=1.
故选:B.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.6、D【解析】
根据一元二次方程有两个不相等的实数根,可得进而计算k的范围即可.【详解】解:根据一元二次方程有两个不相等的实数根可得计算可得又根据要使方程为一元二次方程,则必须所以可得:且故选D.【点睛】本题主要考查根与系数的关系,根据一元二次方程有两个不相等的实根可得,;有两个相等的实根则,在实数范围内无根,则.7、C【解析】
根据三角形全等的判定方法对各选项分析判断即可得解.【详解】∵OP是∠AOB的平分线,∴∠AOP=∠BOP,而OP是公共边,A、添加OC=OD可以利用“SAS”判定△POC≌△POD,B、添加∠OPC=∠OPD可以利用“ASA”判定△POC≌△POD,C、添加PC=PD符合“边边角”,不能判定△POC≌△POD,D、添加PC⊥OA,PD⊥OB可以利用“AAS”判定△POC≌△POD,故选:C.【点睛】本题考查了角平分线的定义,全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.8、A【解析】
根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.1,1.1,1.1,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.1.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.9、B【解析】试题分析:,所以x=1时,y取得最大值4,时,y<4,B错误故选B.考点:二次函数图像点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.10、C【解析】
根据三角形的中位线及直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵AB=3,BC=4,∴AC=,∵O点为AC中点,∴BO==2.5,又M是AD中点,∴MO是△ACD的中位线,故OM==1.5,∴四边形ABOM的周长为AB+BO+MO+AM=3+2.5+2+1.5=9,故选C.【点睛】此题主要考查矩形的性质,解题的关键是熟知直角三角形的性质及中位线定理的性质.11、D【解析】
要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即AB==15厘米.故选:D.【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.12、B【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:把点A(﹣4,﹣3)向上平移2个单位后的对应点A1的坐标为(﹣4,﹣3+2),即(﹣4,﹣1),故选:B.【点睛】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.二、填空题(每题4分,共24分)13、>【解析】分析:根据一次函数的性质得到y随x的增大而减小,根据1<2即可得出答案.详解:∵函数中,k=-3<0,∴y随x的增大而减小,∵函数y=-3x+2的图象经过点A(1,m)和点B(2,n),1<2,∴m>n,故答案为:>.点睛:本题主要考查对一次函数图象上点的坐标特征,一次函数的性质等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理是本题的关键.14、或【解析】
根据AB=AC,∠A=40°,得到∠ABC=∠C=70°,然后分当CD=CB时和当BD=BC时两种情况求得∠ABD的度数即可.【详解】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,当CD=CB时,∠CBD=∠CDB=(180°-70°)÷2=55°,此时∠ABD=70°-55°=15°;当BD=BC时,∠BDC=∠BCD=70°,∴∠DBC=180°-70°-70°=40°,∴∠ABD=70°-40°=30°,故答案为:15°或30°.【点睛】本题考查了等腰三角形的性质,解题的关键是能够分类讨论,难度不是很大,是常考的题目之一.15、【解析】根据题意可知15个字母里a出现了2次,所以字母“a”出现的频率是.故答案为.16、2【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,∴∠ABO=∠CBO,AC⊥BD.∵AO=1,BO=,∴AB=2,∴sin∠ABO==∴∠ABO=30°,∴∠ABC=∠BAC=60°.由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;∵∠ABO=∠CBO,∴BE=BF,∴△BEF是等边三角形,∴∠BEF=60°,∴∠OEF=60°,∴∠AEO=60°,∵∠BAC=60°.∴△AEO是等边三角形,,∴AE=OE,∴BE=AE,同理BF=FC,∴EF是△ABC的中位线,∴EF=AC=1,AE=OE=1.同理CF=OF=1,∴五边形AEFCD的周长为=1+1+1+2+2=2.故答案为2.17、x-1【解析】
分别对2个多项式因式分解,再取公因式.【详解】解:多项式=a(x+1)(x-1)2x2-4x+2=2(x-1)2所以两个多项式的公因式是x-1【点睛】本题考查公因式相关,熟练掌握并利用求多项式公因式的方法进行分析是解题的关键.18、70%【解析】
利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.
故答案是:70%.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三、解答题(共78分)19、(1)点A的坐标为(0,6)、B的坐标(0,﹣4);(2)△ABC的面积为12.1.【解析】
(1)根据y轴的点的坐标特征可求点A、B的坐标;(2)联立方程组求得交点C的坐标,再根据三角形面积公式可求△ABC的面积.【详解】(1)令x=0,则y=6、y=﹣4则点A的坐标为(0,6)、B的坐标(0,﹣4);(2)联立方程组可得,解得,即C点坐标为(-2.1,1)故△ABC的面积为(6+4)×2.1÷2=12.1【点睛】本题考查了两直线相交的问题,直线与坐标轴的交点坐标的求解方法,联立两直线解析式求交点是常用的方法之一,要熟练掌握.20、(1)k=-1,b=4;(2)x<1;(3)点D的坐标为D(0,﹣4)或D(0,12).【解析】
(1)用待定系数法求解;(2)kx+b>3x,结合图象求解;(3)先求点B的坐标为(4,0).设点D的坐标为(0,m),直线DB:y=-,过点C作CE∥y轴,交BD于点E,则E(1,),可得CE,S△BCD=S△CED+S△CEB==|3﹣|×4=2|3﹣,由S△BCD=2S△BOC可求解.【详解】解:(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(﹣2,6)、C(1,3)代入y=kx+b,得:解得:;(2)由kx+b﹣3x>0,得kx+b>3x,∵点C的横坐标为1,∴x<1;(3)由(1)直线AB:y=﹣x+4当y=0时,有﹣x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m),∴直线DB:y=-,过点C作CE∥y轴,交BD于点E,则E(1,),∴CE=|3﹣|∴S△BCD=S△CED+S△CEB==|3﹣|×4=2|3﹣|.∵S△BCD=2S△BOC,即2|3﹣|=×4×3×2,解得:m=﹣4或12,∴点D的坐标为D(0,﹣4)或D(0,12).【点睛】考核知识点:一次函数的综合运用.数形结合分析问题是关键.21、(1)y=﹣x+1;(2)200元【解析】
(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.
(2)把x=30代入函数式求y,根据:(售价-进价)×销售量=利润,求解.【详解】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).则解得即一次函数解析式为y=﹣x+1.(2)当x=30时,每日的销售量为y=﹣30+1=10(件)每日所获销售利润为(30﹣10)×10=200(元)【点睛】本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.22、甲班学生的人数为42名,乙班学生的人数为40名.【解析】
设乙班学生的人数为名,则甲班学生的人数为名,由乙班学生的数比甲班学生的人均捐款数多1元可得等量关系:乙班平均每人捐款金额-甲班平均每人捐款金额=1.【详解】解:设乙班学生的人数为名,则甲班学生的人数为名.根据题意,得.整理,得.解得,.经检验:,都是原方程的根,但不符合题意,舍去.答:甲班学生的人数为42名,乙班学生的人数为40名.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23、(1),;(2);(3)或【解析】
(1)将点代入到直线中,即可求出b的值,然后将点P的坐标代入直线中即可求出m的值;(2)根据图象即可得出结论;(3)分别用含a的式子表示出点C和点D的纵坐标,再根据CD的长和两点之间的距离公式列出方程即可求出a.【详解】解:(1)∵点在直线上∴∵点在直线上,∴∴(2)由图象可知:当时,;(3)当时,,当时,∵∴解得或【点睛】此题考查的是一次函数的图象及性质,掌握根据直线上的点求直线的解析式、一次函数与一元一次不等式的关系和直角坐标系中两点之间的距离公式是解决此题的关键.24、(1),;(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内;(3)乙车间的合格率高【解析】
(1)根据加权平均数的计算公式直接计算即可;(2)根据中位数、众数的定义得出答案;(3)分别计算两车间的合格率比较即可得出答案。【详解】解:(1)(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内(3)甲车间合格率:;乙车间合格率:;乙车间的合格率高【点睛】本题考查了数据的分析,考查了加权平均数、中位数、众数等统计量,理解并掌握常用的统计量的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 万达商业广场2024年物业综合管理协议版B版
- 论文答辩精要解析
- 2025年度拆迁安置住房租赁及物业管理合同4篇
- 二零二五年度建筑工程项目建造师劳动合同范本9篇
- 2025年度产教融合校企产学研合作项目执行框架协议4篇
- 二零二五年度餐厅经理劳动合同范本:服务质量提升3篇
- 二零二四年事业单位委托第三方社保代缴与员工绩效奖励协议3篇
- 二零二五年度大米产品绿色包装与环保材料应用合同2篇
- 2024饲料行业客户数据共享协议
- 2025年度商业地产项目场地租赁及物业管理合同12篇
- 国家自然科学基金项目申请书
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
- HIV感染者合并慢性肾病的治疗指南
评论
0/150
提交评论