




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省七台河市2024届八年级数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是()A. B. C. D.2.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A. B. C. D.3.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是().A.4.5 B.5 C.2 D.1.54.若两个相似三角形的周长比为4:3,则它们的相似比为().A.4:3 B.3:4 C.16:9 D.9:165.一次函数y=—2x+3的图象与两坐标轴的交点是()A.(3,1)(1,); B.(1,3)(,1); C.(3,0)(0,); D.(0,3)(,0)6.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()cm2A.4 B.16 C.12 D.87.如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为()A. B. C. D.8.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数 B.众数 C.平均数 D.方差9.计算:=()A. B.4 C.2 D.310.把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n=8,则直线AB的表达式为()A.y=﹣2x+4 B.y=﹣2x+8 C.y=﹣2x﹣4 D.y=﹣2x﹣811.若式子的值等于0,则x的值为()A.±2 B.-2 C.2 D.-412.如图,正方形中,,是的中点,是上的一动点,则的最小值是()A.2 B.4 C. D.二、填空题(每题4分,共24分)13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.14.平行四边形ABCD中,若,=_____.15.学校校园歌手大奖赛共有12位选手入围,按成绩取前6位进入决赛.如果王晓鸥同学知道了自己的成绩,要判断能否进入决赛,用数据分析的观点看,她还需要知道的数据是这12位同学的___.16.计算:=___________.17.函数y=与y=k2x(k1,k2均是不为0的常数)的图象相交于A、B两点,若点A的坐标是(1,2),则点B的坐标是______.18.已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.三、解答题(共78分)19.(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.20.(8分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.21.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明.22.(10分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;(3)如图3,当点在线段的延长线上,且时,求线段的长.23.(10分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.24.(10分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.(1)在图①中,画出以点A为顶点的非特殊的平行四边形.(2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.25.(12分)(1)解不等式组(2)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值。26.计算:
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.【详解】解:由题意可得,
刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,
然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,
故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.2、D【解析】根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数图象,然后即可选择:每浆洗一遍,注水阶段,洗衣机内的水量从1开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为1.纵观各选项,只有D选项图象符合.故选D.3、A【解析】
直接根据平行线分线段成比例定理即可得出结论.【详解】∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴ACCE=BDDF,即故选A.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.4、A【解析】
根据相似三角形的周长比等于它们的相似比求解即可.【详解】∵两个相似三角形的周长比为4:3∴它们的相似比为4:3故答案为:A.【点睛】本题考查了相似三角形的相似比问题,掌握相似三角形的周长比等于它们的相似比是解题的关键.5、D【解析】y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D6、D【解析】
根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.【详解】根据正方形的轴对称性可得,阴影部分的面积=S正方形,∵正方形ABCD的边长为4cm,∴S阴影=×42=8cm2,故选D.【点睛】本题考查了轴对称的性质,正方形的面积,根据图形判断出阴影部分的面积等于正方形的面积的一半是解题的关键.7、B【解析】
先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.【详解】解:∵点A的坐标为(4,0),点的坐标为(0,3),∴OA=4,OB=3,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴AC=5,∴OC=1,∴点C的坐标为(-1,0).故选B.【点睛】本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.8、A【解析】
根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.9、D【解析】
先利用二次根式的性质化简,再合并同类二次根式得出答案.【详解】解:=+2=3.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.10、B【解析】
由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【详解】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=1③把③代入②,解得y=﹣2x+1,即直线AB的解析式为y=﹣2x+1.故选:B.【点睛】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.11、C【解析】=0且x²+4x+4≠0,解得x=2.故选C.12、D【解析】
因为A,C关于DB对称,P在DB上,连接AC,EC与DB交点即为P,此时的值最小.【详解】如图,因为A,C关于DB对称,P再DB上,作点连接AC,EC交BD与点P,此时最小.此时=PE+PC=CE,值最小.∵正方形中,,是的中点∴∠ABC=90°,BE=2,BC=4∴CE=故答案为故选D.【点睛】本题考查的是两直线相加最短问题,熟练掌握对称是解题的关键.二、填空题(每题4分,共24分)13、-3【解析】点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则14、120°【解析】
根据平行四边形对角相等求解.【详解】平行四边形ABCD中,∠A=∠C,又,∴∠A=120°,故填:120°.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.15、中位数.【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故答案为中位数.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.16、【解析】
解:2-=故答案为:17、(-1,-2)【解析】
根据函数图象的中心对称性,由一个交点坐标,得出另一个交点坐标,“关于原点对称的两个的纵横坐标都是互为相反数”这一结论得出答案.【详解】∵正比例函数y=k2x与反比例函数数y=的图象都是以原点为对称中心的中心对称图形,∴他们的交点A与点B也关于原点对称,∵A(1,2)∴B(-1,-2)故答案为:(-1,-2)【点睛】考查正比例函数、反比例函数的图象和性质,得出点A和点B关于原点对称是解决问题的关键,掌握“关于原点对称的两个的纵横坐标都是互为相反数”是前提.18、2或或【解析】
分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.【详解】解:(1)当点P在CD上时,如解图①,,,;(2)当点P在对角线AC上时,如解图②,,.当时,,;图①图②(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,,,,,,,.,在中,由勾股定理得,解得,(舍).综上所述,DP的长为2或或.故答案为:2或或.【点睛】本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.
错因分析较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.
三、解答题(共78分)19、(1)证明见解析;(2)16.【解析】
(1)已知O是AC的中点,可得AO=CO.又因AD∥BC,根据平行线的性质可得∠DAO=∠BCO,再由∠AOD=∠COB,利用ASA即可判定ΔAOD≅△COB,由全等三角形的性质可得AD=BC,再由一组对边平行且相等的四边形为平行四边形即可判定四边形ABCD是平行四边形;(2)根据对角线互相垂直的平行四边形为菱形判定四边形ABCD为菱形,由此即可求得四边形ABCD的周长.【详解】(1)证明:∵O是AC的中点,∴AO=CO.∵AD∥BC
,∴∠DAO=∠BCO,又∵∠AOD=∠COB,∴ΔAOD≅△COB,∴AD=BC,又∵AD∥BC,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∵AB=4,∴菱形ABCD的周长为16.【点睛】本题考查了平行四边形的判定及菱形的判定与性质,证明ΔAOD≅△COB是解决问题的关键.20、(1)如图所示,DF即为所求,见解析;(2)见解析.【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;(2)根据角平分线的性质解答即可.【详解】(1)如图所示,DF即为所求:(2)∵△ABC中,∠A=60°,∠C=40°,∴∠ABC=80°,∵DE垂直平分BC,∴BD=DC,∴∠DBC=∠C=40°,∴∠ABD=∠DBC=40°,即BD是∠ABC的平分线,∵DF⊥AB,DE⊥BC,∴DF=DE,即点D到BA,BC的距离相等.【点睛】此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.21、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;【详解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,顶点在BC边上,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形.【点睛】此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.22、(1);(2)见解析;(3).【解析】
(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
(2)证△BAE≌△CAF即可得;
(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.【详解】解:(1)如图1,连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC中点,
∴AE⊥BC,BE=BC=AB
在Rt△ABE中,AE=BEtanB=BE;(2)证明:连接,如图2中,∵四边形是菱形,,∴与都是等边三角形,∴,.∵,∴,在和中,,∴.∴.(3)解:连接,过点作于点,如图3所示,∵,,∴.在中,∵,,∴,∴.在中,∵,,∴,∴.由(2)得,,则,∵,∴,可得,∴,∴.【点睛】考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.23、AE=CF.理由见解析.【解析】试题分析:根据两组对边平行的四边形是平行四边形,可以证明四边形AECF是平行四边形,从而得到AE=CF.试题解析:AE=CF.理由如下:∵四边形ABCD是平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息咨询合同标准文本 英语
- 免烧砖买卖合同标准文本
- 公路机电合同样本
- 个人资金托管合同标准文本
- 中标多家医院项目合同样本
- 产品股权合同样本
- 企业废料收购合同样本
- 个人档案合同标准文本
- 策划调酒师考试的多元练习试题及答案
- 2025上海市郊区土地流转承包合同(I)
- 基坑工程土方开挖支护与降水监理实施细则
- 江苏徐州市深地科学与工程云龙湖实验室社会招考聘用9人模拟试卷【附答案解析】
- 土方回填施工记录表
- 植物根茎叶课件
- 反生产行为讲稿
- 施工现场消防安全技术交底
- 冀教版二年级语文下册看图写话专项加深练习题含答案
- 焊接工艺评定及焊接工艺技术评定管理标准
- 洗衣房各岗位工作流程
- 基于SWOT分析的义乌市现代物流业发展研究
- 基于自适应滤波对音频信号的处理详解
评论
0/150
提交评论