版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省枣庄市枣庄市第四十一中学八年级数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<22.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23 B.24 C.25 D.无答案3.一元二次方程x2﹣8x+20=0的根的情况是()A.没有实数根B.有两个相等的实数根C.只有一个实数根D.有两个不相等的实数根4.下列图象能表示一次函数的是()A. B. C. D.5.在解分式方程+=2时,去分母后变形正确的是()A. B.C. D.6.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF= D.AF=EF7.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量8.如图l1:y=x+3与l2:y=ax+b相交于点P(m,4),则关于x的不等式x+3≤ax+b的解为()A.x≥4 B.x<m C.x≥m D.x≤19.下列调查:①了解夏季冷饮市场上冰淇淋的质量;②了解嘉淇同学20道英语选择題的通过率;③了解一批导弹的杀伤范围;④了解全国中学生睡眠情况.不适合普查而适合做抽样调查的是()A.①②④ B.①③④ C.②③④ D.①②③10.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A. B. C. D.二、填空题(每小题3分,共24分)11.函数中,自变量的取值范围是_____.12.函数中,自变量x的取值范围是▲.13.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是_____.14.在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.15.已知反比例函数的图像过点、,则__________.16.若关于的方程无解,则的值为________.17.如图,已知一次函数y=−x+b和y=ax−2的图象交于点P(−1,2),则根据图象可得不等式−x+b>ax−2的解集是______.18.如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为_____.三、解答题(共66分)19.(10分)计算:(1)(2)已知,试求以a、b、c为三边的三角形的面积.20.(6分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.(1)求点A、B、D的坐标;(2)求直线BD的表达式.21.(6分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:时间x(小时)划记人数所占百分比0.5x≤x≤1.0正正1428%1.0≤x<1.5正正正1530%1.5≤x<272≤x<2.548%2.5≤x<3正510%3≤x<3.533.5≤x<44%合计50100%(1)请填表中未完成的部分;(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.22.(8分)某工厂生产的件新产品,需要精加工后才能投放市场.现把精加工新产品的任务分给甲、乙两人,甲加工新产品的数量要比乙多.(1)求甲、乙两人各需加工多少件新产品;(2)已知乙比甲平均每天少加工件新产品,用时比甲多用天时间.求甲平均每天加工多少件新产品.23.(8分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.24.(8分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表(1)张明第2次的成绩为__________秒;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.25.(10分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛.现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差()甲771.2乙7.54.2(1)分别求表格中、、的值.(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.26.(10分)如图,在四边形ABCD中,AB//CD,AB=BC=2CD,E为对角线AC的中点,F为边BC的中点,连接DE,EF.(1)求证:四边形CDEF为菱形;(2)连接DF交EC于点G,若DF=2,CD=53,求AD
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.【点睛】此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.2、B【解析】
根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.【详解】(m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.3、A【解析】
先计算出△,然后根据判别式的意义求解.【详解】∵△=(-8)2-4×20×1=-16<0,∴方程没有实数根.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、D【解析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.【详解】y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.【点睛】考查了一次函数的性质,解题的关键是能够分类讨论.5、A【解析】
本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,
得:3-(x+2)=2(x-1).
故答案选A.【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.6、D【解析】试题分析:∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;由已知条件无法确定AF和EF的关系,故选D.考点:翻折变换(折叠问题).7、B【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【解析】试题分析:首先把P(m,4)代入y=x+3可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.解:把P(m,4)代入y=x+3得:m=1,则P(1,4),根据图象可得不等式x+3≤ax+b的解集是x≤1,故选D.9、B【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:①④中个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查;③了解一批导弹的杀伤范围具有破坏性不宜普查;②个体数量少,可采用普查方式进行调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、D【解析】根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数图象,然后即可选择:每浆洗一遍,注水阶段,洗衣机内的水量从1开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为1.纵观各选项,只有D选项图象符合.故选D.二、填空题(每小题3分,共24分)11、【解析】
根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.12、.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.13、5吨【解析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】表中数据为从小到大排列,吨处在第10位、第11位,为中位数,故这组数据的中位数是吨.故答案为:吨.【点睛】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.14、甲【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:由于S2甲<S乙2,则成绩较稳定的演员是甲.故答案为甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、【解析】
根据反比例函数的增减性,结合点A和点B的横坐标的大小,即可得到答案.【详解】∵m2≥0,∴m2+2>m2+1,∵反比例函数y=,k>0,∴当x>0时,y随着x的增大而减小,∴y1>y2,故答案为:>.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的增减性是解题的关键.16、【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【详解】去分母得:3x−2=2x+2+m,由分式方程无解,得到x+1=0,即x=−1,代入整式方程得:−5=−2+2+m,解得:m=−5,故答案为-5.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则.17、x>-1;【解析】
根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】一次函数和的图象交于点,不等式的解集是.故答案为:.【点睛】此题考查了一次函数与一元一次不等式的应用,主要考查了学生的观察能力和理解能力,题型较好,难度不大.18、2cm.【解析】试题解析:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).三、解答题(共66分)19、(1);(2)以a、b、c为三边的三角形的面积为1.【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.【详解】解:(1)原式;(2)由题意得:,,,,,,,,,∴以a、b、c为三边的三角形是直角三角形.∴它的面积是.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.20、(1)A(﹣2,0),点B(0,1),D(2,﹣2);(2)y=﹣3x+1.【解析】
(1)由于ー次函数y=2x+1的图象与x、y轴分别相交于点A、B,所以利用函数解析式即可求出AB两点的坐标,然后过D作DH⊥x轴于H点,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AHD=90°,AB=AD,接着证明△ABO≌△DAH,最后利用全等三角形的性质可以得到DH=AO=2,AH=BO=1,从而求出点D的坐标;(2)利用待定系数法即可求解【详解】解:(1)∵当y=0时,2x+1=0,x=﹣2.∴点A(﹣2,0).∵当x=0时,y=1.∴点B(0,1).过D作DH⊥x轴于H点,∵四边形ABCD是正方形,∴∠BAD=∠AOB=∠AHD=90°,AB=AD.∴∠BAO+∠ABO=∠BAO+∠DAH,∴∠ABO=∠DAH.∴△ABO≌△DAH.∴DH=AO=2,AH=BO=1,∴OH=AH﹣AO=2.∴点D(2,﹣2).(2)设直线BD的表达式为y=kx+b.∴解得,∴直线BD的表达式为y=﹣3x+1.【点睛】此题考查一次函数综合题,利用全等三角形的性质是解题关键21、(1)详见解析;(2)58%;(3)详见解析.【解析】
(1)根据百分比的意义以及各组的百分比的和是1即可完成表格;(2)根据百分比的意义即可求解;(3)根据实际情况,写出的句子只要符合题意,与家务劳动有关即可,答案不唯一.【详解】解:(1)一组的百分比是:;一组的百分比是:;一组的人数是2(人;(2)每周做家务的时间不超过1.5小时的学生所占的百分比是:;(3)孝敬父母,每天替父母做半小时的家务.【点睛】本题难度中等,考查统计图表的识别,要注意统计表中各部分所占百分比的和是1,各组人数的和就是样本容量.22、(1)甲、乙两人分别需加工件、件产品;(2)甲平均每天加工件产品【解析】
(1)方法一:先求得乙的加工的产品件数,即可求得甲需加工的产品件数;方法二:设乙需加工件产品,结合题意列出甲、乙需加工的产品件数即可.(2)设甲平均每天加工件产品,则乙平均每天加工件产品,结合题意列出方程求解即可.【详解】解:(1)方法一:乙的加工的产品件数为:则甲需加工的产品件数为:方法二:设乙需加工件产品,则甲需加工件零件,根据题意,得.解得所以,甲、乙两人分别需加工件、件产品.(2)设甲平均每天加工件产品,则乙平均每天加工件产品,由题意可得解得经检验它们都是原方程的根,但不符合题意.答:甲平均每天加工件产品【点睛】此题考查一元一次方程,解题关键在于结合题意列出方程.23、见解析【解析】
根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.【详解】解:∵AE=a,DE=b,AD=c,∴S正方形EFGH=EH1=(a+b)1,S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,∴(a+b)1=1ab+c1,∴a1+b1=c1.【点睛】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.24、(1)13.4;(2)13.3,13.3;(3)选择张明【解析】
根据折线统计图写出答案即可根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.根据平均线一样,而张明的方差较稳定,所以选择张明.【详解】(1)根据折线统计图写出答案即可,即13.4;(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度企业形象策划与推广补充合同
- 二零二四年林地租赁协议样本
- 大学员工入职合同(2篇)
- 医药公司合同(2篇)
- 化验室师徒协议书范本(2篇)
- 反三违目标协议书(2篇)
- 股权分配的协议书
- 二零二四年度地质勘查项目实施及管理合同
- 员工合同及保密条款解析
- 出纳信息真实性保证
- 工程设计-《工程勘察设计收费标准》(2002年修订本)-完整版
- MOOC 光学发展与人类文明-华南师范大学 中国大学慕课答案
- (整理版)圆的参数方程及应用
- 色彩搭配-颜色搭配PPT课件
- 员工竞业限制管理PPT课件
- 2022年地壳运动与变化教案与学案
- 上海市单位退工证明退工单(四联)
- NRC2012营养标准(中文版)
- 宝鸡市某办公楼空调用制冷机房设计
- 能量机动理论和飞行包线图
- 六年级环境教育备课(青岛版)
评论
0/150
提交评论