广东汕尾甲子镇瀛江学校2024年八年级下册数学期末预测试题含解析_第1页
广东汕尾甲子镇瀛江学校2024年八年级下册数学期末预测试题含解析_第2页
广东汕尾甲子镇瀛江学校2024年八年级下册数学期末预测试题含解析_第3页
广东汕尾甲子镇瀛江学校2024年八年级下册数学期末预测试题含解析_第4页
广东汕尾甲子镇瀛江学校2024年八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东汕尾甲子镇瀛江学校2024年八年级下册数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成续时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.平均数 B.中位数 C.众数 D.方差2.某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600 B.1280(1+2x)=1600C.1280(1+x)2=2880 D.1280(1+x)+1280(1+x)2=28803.某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时 B.4.4小时 C.4.8小时 D.5小时4.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲01202乙21011关于以上数据的平均数、中位数、众数和方差,说法不正确的是()A.甲、乙的平均数相等 B.甲、乙的众数相等C.甲、乙的中位数相等 D.甲的方差大于乙的方差5.px2-3x+p2A.p=1 B.p>0 C.p≠0 D.p为任意实数6.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()A.2 B.4 C.6 D.87.用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是().A.(x-4)2=14 B.(x-4)2=18 C.(x+4)2=14 D.(x+4)2=188.下列运算,正确的是()A. B. C. D.9.已知四边形ABCD中,AB∥CD,添加下列条件仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=180°10.如图,点为的平分线上的一点,于点.若,则到的距离为()A.5 B.4 C.3.5 D.3二、填空题(每小题3分,共24分)11.已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.12.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).13.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.14.若是一元二次方程的两个实数根,则=__________.15.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.16.如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.17.若代数式有意义,则x的取值范围是__________.18.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求一次函数y=kx+b的解析式;(2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.20.(6分)如图,四边形ABCD为平行四边形,的平分线AE交CD于点F交BC的延长线于点E.(1)求证:;(2)连接BF、AC、DE,当时,求证:四边形ACED是平行四边形.21.(6分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求CF的长22.(8分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形且BC=2AB=8时,求出该菱形的面积.23.(8分)如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.​24.(8分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;(2)求出该班调查的家庭总户数是多少?(3)求该小区用水量不超过15的家庭的频率.25.(10分)已知:如图,在菱形ABCD中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.26.(10分)某市米厂接到加工大米任务,要求天内加工完大米.米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工大米数量与甲车间加工时间(天)之间的关系如图1所示;未加工大米与甲车间加工时间(天)之间的关系如图2所示,请结合图像回答下列问题(1)甲车间每天加工大米__________;=______________;(2)直接写出乙车间维修设备后,乙车间加工大米数量与(天)之间的函数关系式,并指出自变量的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:B.【点睛】此题考查中位数的定义,解题关键在于掌握其定义2、C【解析】

根据2017年及2019年该地投入异地安置资金,即可列出关于x的一元二次方程.【详解】解:设从2017年到2019年该地投入异地安置资金的年平均增长率为x根据题意得:1280(1+x)2=1280+1600=2880.故选C.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.3、B【解析】分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.4、B【解析】

根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,xn,则(x1+x2+…+xn)就叫做这n个数的算术平均数;s2=进行计算即可.【详解】解:A、甲的平均数为1,乙的平均数为1,故原题说法正确;B、甲的众数为0和2,乙的众数为1,故原题说法不正确;

C、甲的中位数为1,乙的中位数为1,故原题说法正确;

D、甲的方差为,乙的方差为,甲的方差大于乙的方差,故原题说法正确;

故选B.【点睛】本题考查众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.5、C【解析】

一元二次方程的二次项系数不为1.【详解】∵方程px2-3x+∴二次项系数p≠1,故选C.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.6、D【解析】

根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.【详解】解:∵正方形ABCD,AD=4,∴AB=AD=4=BC,∵BC=2OB,∴OB=2,∴A(2,4),代入y=得:k=8,故选:D.【点睛】本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.7、A【解析】

依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【详解】解:x2-8x+2=0,x2-8x=-2,x2-8x+16=-2+16,(x-4)2=14,故选A.移项,配方,即可得出选项.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,能够正确配方是解此题的关键.8、D【解析】

分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.【详解】A选项:m•m2•m3=m6,故此选项错误;

B选项:m2+m2=2m2,故此选项错误;

C选项:(m4)2=m8,故此选项错误;

D选项:(-2m)2÷2m3=,此选项正确.

故选:D.【点睛】考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.9、B【解析】

平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.10、B【解析】

如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【详解】如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选B.【点睛】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.二、填空题(每小题3分,共24分)11、1【解析】

根据算术平均数的计算方法列方程求解即可.【详解】解:由题意得:解得:.故答案为1.【点睛】此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.12、<【解析】

方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.【详解】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴则故答案为:<【点睛】本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.13、【解析】

利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.【详解】平分,.平分,..同理可得:;......【点睛】本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.14、-1【解析】

根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,∴x1+x2+x1x2=﹣1故答案为﹣1.【点睛】本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.15、1【解析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.解答:解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=1.故答案为1.16、【解析】

首先利用勾股定理求得BC的长,然后根据折叠的性质可以得到AE=EC,则△ABE的周长=AB+BC,即可求解.【详解】解:在直角△ABC中,BC==8cm,

∵将折叠,使点与点重合,∵AE=EC,

∴△ABE的周长=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).

故答案是:14cm.【点睛】本题考查了轴对称(折叠)的性质以及勾股定理,正确理解折叠中相等的线段是关键.17、且【解析】

结合二次根式和分式有意义的条件,列式求解即可得到答案;【详解】解:∵代数式有意义,∴,解得:且,故答案为:且.【点睛】本题主要考查了二次根式和分式有意义的条件;对于二次根式,被开方数不能为负;对于分式,分母不能为0;掌握这两个知识点是解题的关键.18、6或1【解析】

△ABC中,∠ACB分锐角和钝角两种:

①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;

②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD-CD代入可得结论.【详解】解:有两种情况:

①如图1,∵AD是△ABC的高,

∴∠ADB=∠ADC=90°,

由勾股定理得:BD==1,

CD==4,

∴BC=BD+CD=5+1=6;

②如图2同理得:CD=4,BD=1,

∴BC=BD-CD=4-1=1,

综上所述,BC的长为6或1;

故答案为6或1.【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.三、解答题(共66分)19、(1)y=−x+4;(2)(0,−6)【解析】

(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A.C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD═S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标。【详解】(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(−2,6)、C(1,3)代入y=kx+b,得:,解得:,∴一次函数y=kx+b的表达式为:y=−x+4;(2)当y=0时,有−x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m)(m<0),∵S△COD═S△BOC,即−m=××4×3,解得:m=−6,∴点D的坐标为(0,−6).【点睛】此题考查一次函数图象上点的坐标特点,待定系数法求一次函数解析式,两条直线相交或平行问题,解题关键在于把已知点代入解析式求出k,b的值20、(1)详见解析;(2)详见解析.【解析】

(1)由平行四边形的性质可得AD∥BC,AB∥CD,AB=CD,即可得∠AEB=∠DAE,由AE是∠BAD的平分线,根据角平分线的定义可得∠BAE=∠DAE,所以∠BAE=∠AEB,即可判定AB=BE,由此即可证得结论;(2)已知AB=BE,BF⊥AE,由等腰三角形三线合一的性质可得AF=EF,再证明△ADF≌△ECF,根据全等三角形的性质可得CF=DF,由对角线互相平分的四边形为平行四边形即可判定四边形ACED是平行四边形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)∵AB=BE,BF⊥AE,∴AF=EF,∵AD∥BC,∴∠ADF=∠ECF,∠DAF=∠AEC,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴CF=DF,∵AF=EF,CF=DF,∴四边形ACED是平行四边形.【点睛】本题考查了平行四边形的性质与判定,熟练运用平行四边形的性质定理及判定定理是解决问题的关键.21、(1)见详解;(2).【解析】

(1)由同角的余角相等可得出∠DEF=∠ABE,结合∠A=∠D=90°,即可证出△ABE∽△DEF;

(2)由AD、AE的长度可得出DE的长度,根据相似三角形的性质可求出DF的长度,将其代入CF=CD-DF即可求出CF的长.【详解】(1)证明:∵EF⊥BE,

∴∠EFB=90°,

∴∠DEF+∠AEB=90°.

∵四边形ABCD为矩形,

∴∠A=∠D=90°,

∴∠AEB+∠ABE=90°,

∴∠DEF=∠ABE,

∴△ABE∽△DEF.

(2)解:∵AD=12,AE=8,

∴DE=1.

∵△ABE∽△DEF,

∴=,

∴DF=,

∴CF=CD-DF=6-=.【点睛】本题考查相似三角形的判定与性质以及矩形的性质,解题关键是:(1)利用同角的余角相等找出∠DEF=∠ABE;(2)利用相似三角形的性质求出DF的长度.22、(1)详见解析;(2)8【解析】

(1)根据平行四边形的性质和全等三角形的判定解答即可;

(2)根据菱形的性质和菱形的面积解答即可.【详解】(1)证明:∵平行四边形ABCD∴BC=AD,B=D,AB=CD∵点E、F分别为BC、AD中点∴BE=0.5BC,DF=0.5AD∴DE=DF∴∠B=∠D,AB=CD∴△ABE≌△CDF(2)∵四边形AECF是菱形

∴CE=AE

BE=CE=AE=4

∵AB=4

∴AB=BE=AE=4,

过点A作AH⊥BC于H

AH=23

S菱形AECF=CE×AH=4×23=83.【点睛】考查了菱形的性质,全等三角形的判定与性质,根据平行四边形的性质和全等三角形的判定解答是解题的关键.23、1【解析】

先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC−BF=4,设CE=x,则DE=EF=8−x,然后在Rt△ECF中根据勾股定理得到x2+42=(8−x)2,再解方程即可得到CE的长.【详解】∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC−BF=10−6=4,设CE=x,则DE=EF=8−x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+42=(8−x)2,解得x=1,即CE=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.24、(1)m=12,n=0.08;(2)50;(3)0.68.【解析】

(1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;补充完整的频数直方图见详解;(2)根据任意一组频数和频率即可得出总频数,即总频数为;(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.【详解】解:(1)∵频数为6,频率为0.12∴总频数为∴m=50-6-16-10-4-2=12∴n=4÷50=0.08数据求出后,即可将频数直方图补充完整,如下图所示:(2)根据(1)中即可得知,总频数为答:该班调查的家庭总户数是50户

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论