




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省晋江市2024届八年级下册数学期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形2.对于函数y=3-x,下列结论正确的是()A.y的值随x的增大而增大 B.它的图象必经过点(-1,3)C.它的图象不经过第三象限 D.当x>1时,y<0.3.已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是()A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90°C.△ABC的面积为60D.△ABC是直角三角形,且∠A=60°4.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差为,乙组数据的方差为,则乙组数据比甲组数据稳定5.下列实数中,能够满足不等式的正整数是()A.-2 B.3 C.4 D.26.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为()A. B. C. D.7.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于()A.60° B.65° C.75° D.80°8.若反比例函数y的图象位于第二、四象限,则k能取的最大整数为()A.0 B.-1 C.-2 D.-39.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.10.使有意义的x的取值范围是(▲)A.x>-1 B.x≥-1 C.x≠-1 D.x≤-1二、填空题(每小题3分,共24分)11.已知是实数,且和都是整数,那么的值是________.12.直角中,,、、分别为、、的中点,已知,则________.13.函数自变量的取值范围是______.14.化简______.15.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.16.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=_____.17.如图,直线y=-33x-3与x,y两轴分别交于A,B两点,与反比例函数y=kx的图象在第二象限交于点C.过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的纵坐标为18.平行四边形的对角线长分别是、,则它的边长的取值范围是__________.三、解答题(共66分)19.(10分)如图,在中,,将绕点A逆时针旋转,得到,使得点B、C、D恰好在同一条直线上,求的度数.20.(6分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:△ABG≌△AFG;(2)判断BG与CG的数量关系,并证明你的结论;(3)作FH⊥CG于点H,求GH的长.21.(6分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.22.(8分)在平面直角坐标系xOy中,直线过点,直线:与直线交于点B,与x轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.①当b=4时,直接写出△OBC内的整点个数;②若△OBC内的整点个数恰有4个,结合图象,求b的取值范围.23.(8分)列方程或方程组解应用题:几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.24.(8分)在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.25.(10分)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?26.(10分)如图,直线分别与轴、轴交于两点,与直线交于点.(1)点坐标为(,),B为(,).(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,若四边形是平行四边形时,求出此时的值.(3)若点为轴正半轴上一点,且,则在轴上是否存在一点,使得四个点能构成一个梯形若存在,求出所有符合条件的点坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】360÷40=9,即这个多边形的边数是9,故选C.【点睛】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2、C【解析】
根据函数的增减性判断A;将(-1,3)的横坐标代入函数解析式,求得y,即可判断B;根据函数图像与系数的关系判断C;根据函数图像与x轴的交点可判断D.【详解】函数y=3-x,k=-1<0,b=3>0,所以函数经过一、二、四象限,y随x的增大而减小,故A错误,C正确;当x=-1时,y=4,所以图像不经过(-1,3),故B错误;当y=0时,x=3,又因为y随x的增大而减小,所以当x>3时,y<0,故D错误.故答案为C.【点睛】本题考查一次函数的图像与性质,熟练掌握图像与系数的关系,数形结合是解决函数类问题的关键.3、D【解析】试题解析:∵AB=8,BC=15,CA=17,
∴AB2=64,BC2=225,CA2=289,
∴AB2+BC2=CA2,
∴△ABC是直角三角形,因为∠B的对边为17最大,所以AC为斜边,∠ABC=90°,
∴△ABC的面积是×8×15=60,
故错误的选项是D.
故选D.4、C【解析】
根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;
B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;
C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;
D.若甲组数据的方差为,乙组数据的方差为,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.5、D【解析】
将各项代入,满足条件的即可.【详解】A选项,-2不是正整数,不符合题意;B选项,,不符合题意;C选项,,不符合题意;D选项,,符合题意;故选:D.【点睛】此题主要考查不等式的正整数解,熟练掌握,即可解题.6、A【解析】
根据已知点的坐标变换发现规律进行求解.【详解】根据题意得(2,0)变化后的坐标为(1,0);(2,4)变化后的坐标为(1,4);故P点(a,b)变化后的坐标为故选A.【点睛】此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.7、C【解析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【详解】连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选:C.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.8、B【解析】
由图像位于第二、四象限得2k+10,求得k的取值范围即可得到答案.【详解】∵反比例函数y图象位于第二、四象限,∴2k+10,∴,∴k的最大整数解为-1,故选:B.【点睛】此题考查反比例函数的性质,由函数图像所在的象限确定比例系数的取值范围.9、A【解析】A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.10、B【解析】分析:让被开方数为非负数列式求值即可.解答:解:由题意得:x+1≥0,解得x≥-1.故选B.二、填空题(每小题3分,共24分)11、【解析】
根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.【详解】由题意设m+=a(a为整数),=b(b为整数),∴m=a-,∴=b,整理得:
,∴b2-8=1,8a-ab2=-b,解得:b=±3,a=±3,∴m=±3-.故答案为±3-.【点睛】本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..12、3【解析】
由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【详解】∵在直角△ABC中,∠BAC=90°,D.
F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE=3.故答案为3.【点睛】本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.13、【解析】
根据分式与二次根式的性质即可求解.【详解】依题意得x-9>0,解得故填:.【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.14、.【解析】
约去分子与分母的公因式即可.【详解】.故答案为:.【点睛】本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.15、6【解析】∵菱形ABCD中,AB=4,AD的垂直平分线交AC于点N,∴CD=AB=4,AN=DN,∵△CDN的周长=CN+CD+DN=10,∴CN+4+AN=10,∴CN+AN=AC=6.故答案为6.16、2【解析】
依据四边形ABCD是矩形,E是CD的中点,可得AB=CD=4,DE=2,由折叠可得,AE=AB=4,再根据勾股定理,即可得到AD的长.【详解】∵四边形ABCD是矩形,E是CD的中点,
∴AB=CD=4,DE=2,
由折叠可得,AE=AB=4,
又∵∠D=90°,
∴Rt△ADE中,故答案为:2【点睛】本题主要考查了折叠问题以及勾股定理的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.17、2【解析】
作CH⊥x轴于H,如图,先利用一次函数解析式确定B(0,-3),A(-3,0),再利用三角函数的定义计算出∠OAB=30°,则∠CAH=30°,设D(-3,t),则AC=AD=t,接着表示出CH=12AC=12t,AH=3CH=32t得到C(-3-32t,12t),然后利用反比例函数图象上点的坐标特征得到(-3-32【详解】作CH⊥x轴于H,如图,当x=0时,y=-33x-3=-3,则B(0,-3当y=0时,-33x-3=0,解得x=-3,则A(-3,0∵tan∠OAB=OBOA∴∠OAB=30°,∴∠CAH=30°,设D(-3,t),则AC=AD=t,在Rt△ACH中,CH=12AC=12t,AH=3CH=3∴C(-3-32t,12∵C、D两点在反比例函数图象上,∴(-3-32t)•12t=3t,解得t=2即D点的纵坐标为23.故答案为23.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.18、【解析】
根据平行四边形的性质:平行四边形的对角线互相平分.得两条对角线的一半分别是5,8;再根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.进行求解.【详解】根据平行四边形的性质,得对角线的一半分别是5和8.再根据三角形的三边关系,得.故答案为.【点睛】本题考查了三角形的三边关系,掌握任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.三、解答题(共66分)19、【解析】
由旋转的性质得出∠BAD=150°,AD=AB,∠E=∠ACB,由点B,C,D恰好在同一直线上,则△BAD是顶角为150°的等腰三角形,求出∠B=15°,由三角形内角和定理即可得出结果.【详解】解:∵将绕点A逆时针旋转150°,得到,.∵点B、C、D恰好在同一条直线上是顶角为150°的等腰三角形,,,.【点睛】此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD是等腰三角形是解本题的关键.20、(1)见解析;(2)BG=CG;(3)GH=.【解析】
(1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;(2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;(3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.【详解】(1)∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中∵,∴Rt△ABG≌Rt△AFG(HL);(2)∵Rt△ABG≌Rt△AFG,∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG;(3)由(2)知BG=FG=CG=3,∵CE=4,∴GE=5,∵FH⊥CG,∴∠FHG=∠ECG=90°,∴FH∥EC,∴△FHG∽△ECG,则=,即=,解得GH=.【点睛】本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.21、(1)证明见解析;(2)证明见解析.【解析】
(1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;(2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.【详解】(1)如图1.∵四边形ABCD是平行四边形,∴AB∥DC,AB="DC."∴∠1=∠2.∵AE∥CF,∴∠3=∠4.在△AEB和△CFD中,,∴△AEB≌△CFD;(2)如图2.∵△AEB≌△CFD,∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.22、(1)k=2;(2)①有2个整点;②或.【解析】
(1)把A(1,2)代入中可得k的值;(2)①将b=4代入可得:直线解析式为y=-x+4,画图可得整点的个数;②分两种情况:b>0时,b<0时,画图可得b的取值.【详解】解:(1)∵直线过点,∴k=2;(2)①将b=4代入可得:直线解析式为y=-x+4,画图可得整点的个数如图:有2个整点;②如图:观察可得:或.故答案为(1)k=2;(2)①有2个整点;②或.【点睛】本题考查了正比例函数与一次函数的交点问题:求正比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.23、1.【解析】试题分析:设小伙伴的人数为x人,根据打折后票价列等式,解方程即可得到x值,注意最后要检验.试题解析:解:设小伙伴的人数为x人,根据题意,得:360解得:x=1,经检验x=1是原方程的根,且符合题意.答:小伙伴的人数为1人.考点:列分式方程解应用题.24、S=.【解析】
如图,求出BC的长即可解决问题.【详解】解:如图,设等边三有形边长为,由勾股定理,得:,∴∴面积为:S=【点睛】本题考查等边三角形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25、(1)相等;(2)垂直;(3)见解析.【解析】
(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半,再根据矩形、菱形、正方形的判定方法进行判定即可(3)由(2)可知,中点四边形的形状是由原四边形的对角线的关系决定的.【详解】(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)连接AC、BD.根据三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 育儿用工合同范本
- Gepirone-hydrochloride-生命科学试剂-MCE
- CZY43-生命科学试剂-MCE
- 道具采购合同范本
- 汽车金融中的客户细分与个性化服务策略
- 科技产品的生命周期与市场分析
- 电子竞技的社会责任与道德规范
- 木板劳务合同范本
- 社区中草药知识科普守护居民健康生活
- 室外护栏承揽合同范本
- 2025年碳化硅(SiC)市场分析现状
- 2024年湖南高速铁路职业技术学院高职单招数学历年参考题库含答案解析
- 2024年沙洲职业工学院高职单招语文历年参考题库含答案解析
- 2024年广东省《辅警招聘考试必刷500题》考试题库【学生专用】
- 水文工程施工方案
- 学校食堂餐厅管理者食堂安全考试题附答案
- 2025延长石油(集团)限责任公司社会招聘高频重点提升(共500题)附带答案详解
- 《没有纽扣的红衬衫》课件
- 病原微生物安全
- 玻璃电动平移门施工方案
- 车站信号自动控制(第二版) 课件 1-基础.理论
评论
0/150
提交评论