版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年四川省简阳市镇金区、简城区数学八年级下册期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若分式的值为0,则的值是()A. B. C. D.2.如图,在正方形中,,是正方形的外角,是的角平分线上任意一点,则的面积等于()A.1 B. C.2 D.无法确定3.点在反比例函数的图像上,则的值为()A. B. C. D.4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A.、 B.、 C.、 D.、5.反比例函数y=-6xA.第一、二象限 B.第三、四象限C.第一、三象限 D.第二、四象限6.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是(
)A. B. C. D.7.如果一个多边形的内角和等于它的外角和,那么这个多边形是()A.六边形 B.五边形 C.四边形 D.三角形8.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A. B. C. D.9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.2610.化简的结果是()A.2 B. C. D.二、填空题(每小题3分,共24分)11.如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.12.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是_____________。13.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.14.如图,在平行四边形ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为__________.15.线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.16.如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=______.17.在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.18.若分式x-1x+1的值为零,则x的值为三、解答题(共66分)19.(10分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).(1)求此直线和双曲线的表达式;(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.20.(6分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?21.(6分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形(1)以A为顶点的平行四边形;(2)以A为对角线交点的平行四边形.22.(8分)在平面直角坐标系xOy中,点P到封闭图形F的“极差距离”D(P,W)定义如下:任取图形W上一点Q,记PQ长度的最大值为M,最小值为m(若P与Q重合,则PQ=0),则“极差距离”D(P,W)=M﹣m.如图,正方形ABCD的对角线交点恰与原点O重合,点A的坐标为(2,2)(1)点O到线段AB的“极差距离”D(O,AB)=______.点K(5,2)到线段AB的“极差距离”D(K,AB)=______.(2)记正方形ABCD为图形W,点P在x轴上,且“极差距离”D(P,W)=2,求直线AP的解析式.23.(8分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.24.(8分)如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.①若∠BDE=45°,求BDE的面积;②在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.25.(10分)先化简,再求值:÷(1+),其中x=1.26.(10分)(1)已知,,求的值.(2)若,求的平方根.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
解:根据分式为0的条件,要使分式的值为0,必须.解得故选A.2、A【解析】
由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【详解】过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴GC=BG==1,△PBD的面积等于.故答案为:1.【点睛】本题考查正方形的性质,角平分线的性质,解决本题的关键是证明△BPD以BD为底时高与GC相等.3、B【解析】
把点M代入反比例函数中,即可解得K的值.【详解】解:∵点在反比例函数的图像上,∴,解得k=3.【点睛】本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.4、C【解析】
根据中位数和众数的概念进行求解.【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【点睛】本题考查1.中位数;2.众数,理解概念是解题关键.5、D【解析】
根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.【详解】∵y=-6x∴函数图象过二、四象限.故选D.【点睛】本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.6、A【解析】
先根据函数图像得出其经过的象限,由一次函数图像与系数的关系即可得出结论.【详解】因为y随着x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图像经过一、二、四象限.故选A.【点睛】本题考查的是一次函数的图像与系数的关系,即一次函数y=kx+b(k0)中,当k<0,b>0时函数的图像经过一、二、四象限.7、C【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360°列方程求解即可.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=1.故选:C.【点睛】本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.8、D【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故选D.点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.9、D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=(AB+EH)×BE=(8+5)×4=1.故选D.10、D【解析】
直接利用二次根式的性质化简求出答案.【详解】解:.
故选:D.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.二、填空题(每小题3分,共24分)11、南偏东30°【解析】
直接得出AP=12nmile,PB=16nmile,AB=20nmile,利用勾股定理逆定理以及方向角得出答案.【详解】如图,由题意可得:AP=12nmile,PB=16nmile,AB=20nmile,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,∵“远洋”号沿着北偏东60°方向航行,∴∠BPQ=30°,∴“长峰”号沿南偏东30°方向航行;故答案为南偏东30°.【点睛】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.12、(31,16)【解析】
首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).【详解】∵B1的坐标为(1,1),点B2的坐标为(3,2)∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2∴A1的坐标是(0,1),A2的坐标是:(1,2)设直线A1A2的解析式为:y=kx+b∴解得:∴直线A1A2的解析式是:y=x+1∵点B2的坐标为(3,2)∴点A3的坐标为(3,4)∴点B3的坐标为(7,4)∴Bn的横坐标是:2n-1,纵坐标是:2n−1∴Bn的坐标是(2n−1,2n−1)故点B5的坐标为(31,16).【点睛】此题考查了待定系数法求解一次函数的解析式以及正方形的性质,在解题中注意掌握数形结合思想与方程思想的应用.13、2【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.【详解】∵2=1×2,∴F(2)=,故(1)是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).故答案为2.【点睛】本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).14、40°.【解析】
根据平行四边形的性质得到AD∥BC,求得∠AEB=∠CBE,根据等腰三角形的性质得到∠ABE=∠AEB,根据平角的定义得到∠AEB=20°,可得∠ABC的度数,根据平行四边形的对角相等即可得结论.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∵∠BED=160°,∴∠AEB=20°,∴∠ABC=∠ABE+∠CBE=2∠AEB=40°,∴∠D=∠ABC=40°.故答案为40°.【点睛】本题考查平行四边形的性质,平行线的性质,等腰三角形的性质,正确的识别图形是解题的关键.15、(0,0)、(0,)、(4,0)【解析】
由平面直角坐标系的特点可知当P和O重合时三角形PAB是直角三角形,由射影定理逆定理可知当AO2=BO•P′O时,三角形PAB是直角三角形或BO2=AO•OP″时三角形PAB也是直角三角形.【详解】如图:①由平面直角坐标系的特点:AO⊥BO,所以当P和O重合时三角形PAB是直角三角形,所以P的坐标为:(0,0);②由射影定理逆定理可知当AO2=BO•P′O时三角形PAB是直角三角形,即:12=2•OP′,解得OP′=;故P点的坐标是(0,);同理当BO2=AO•OP″时三角形PAB也是直角三角形,即22=1OP″解得OP″=4,故P点的坐标是(4,0).故答案为(0,0)、(0,)、(4,0)【点睛】主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.16、或1【解析】
连接AC,如图1所示:由矩形的性质得到∠D=90°,AD=BC=4,OA=OC,AB∥DC,求得∠OAF=∠OCE,根据全等三角形的性质得到AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,根据勾股定理即可得到结论;②当AE=EF时,作EG⊥AF于G,如图1所示:设AF=CE=x,则DE=6-x,AG=x,列方程即可得到结论;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,根据勾股定理即可得到结论.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,OA=OC,AB∥DC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,在Rt△ADE中,由勾股定理得:41+(6-x)1=x1,解得:x=,即DE=;②当AE=EF时,作EG⊥AF于G,如图1所示:则AG=AE=DE,设AF=CE=x,则DE=6-x,AG=x,∴x=6-x,解得:x=4,∴DE=1;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,∴EH=CE-CH=x-(6-x)=1x-6,在Rt△EFH中,由勾股定理得:41+(1x-6)1=x1,整理得:3x1-14x+51=0,∵△=(-14)1-4×3×51<0,∴此方程无解;综上所述:△AEF是等腰三角形,则DE为或1;故答案为:或1.【点睛】此题考查矩形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,根据勾股定理得出方程是解题的关键,注意分类讨论.17、m>1.【解析】
根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】∵一次函数y=(1﹣m)x+1的函数值y随x的增大而减小,∴1﹣m<0,∴m>1.故答案为m>1.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.18、1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题(共66分)19、(1)直线的解析式为y=2x+2,反比例函数的解析式为y=;(2)M(﹣3,0)或(2,0).【解析】
(1)利用待定系数法即可解决问题;
(2)设M(a,0),表示出P(a,2a+2),Q(a,),根据PQ=2QD,列方程|2a+2-|=|2×|,解得a=2,a=-3,即可得到结果.【详解】(1)∵y=2x+m与(n≠0)交于A(1,4),∴,∴,∴直线的解析式为y=2x+2,反比例函数的解析式为.(2)设M(a,0),∵l∥y轴,∴P(a,2a+2),Q(a,),∵PQ=2QM,∴|2a+2﹣|=|2×|,解得:a=2或a=﹣3,∴M(﹣3,0)或(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.20、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.21、(1)见解析;(2)见解析【解析】
(1)直接利用平行四边形的性质分析得出答案;(2)直接利用菱形的性质得出符合题意的答案.【详解】解:(1)如图所示:平行四边形ABCD即为所求;(2)如图所示:平行四边形DEFM即为所求.【点睛】此题考查应用设计与作图,正确应用网格分析是解题关键.22、(1)2﹣2;4;(2)y=x﹣1或y=x+.【解析】
(1)由题意得出M=OA=2,m=2,即可得出O到线段AB的“极差距离”;由题意得出AK=3,BK=7,则M=BK=7,m=AK=3,即可得出结果;(2)由题意得出点P的坐标为(8,0)或(﹣8,0),设直线AP的解析式为:y=kx+a,代入点A、点P的坐标即可得出解析式.【详解】解:(1)∵点A的坐标为(2,2),正方形ABCD的对角线交点恰与原点O重合,∴OA=,∴M=OA=2,m=2,∴O到线段AB的“极差距离”D(O,AB)=;∵点K(5,2),如图1所示:∴AK=3,BK=7,∴M=BK=7,m=AK=3,∴点K(5,2)到线段AB的“极差距离”D(K,AB)=4;故答案为:2﹣2;4;(2)设点P(x,0),若点P在O的右侧,则M=BP,m=PN=2﹣x,BH=2,PH=x+2,如图2所示:∵“极差距离”D(P,W)=2,∴﹣(2﹣x)=2,解得:x=,同理,点P在O的左侧,x=,∴点P的坐标为(,0)或(﹣,0),设直线AP的解析式为:y=kx+a,当点P的坐标为(,0)时,则:,解得:,∴此时,直线AP的解析式为y=x﹣1;当点P的坐标为(﹣,0)时,则:,解得:,∴此时,直线AP的解析式为y=x+;∴直线AP的解析式为:y=x﹣1或y=x+.【点睛】本题主要考查正方形的性质及待定系数法求一次函数的解析式,能够理解“极差距离”的意义,掌握待定系数法是解题的关键.23、(1)如图所示,DF即为所求,见解析;(2)见解析.【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;(2)根据角平分线的性质解答即可.【详解】(1)如图所示,DF即为所求:(2)∵△ABC中,∠A=60°,∠C=40°,∴∠ABC=80°,∵DE垂直平分BC,∴BD=DC,∴∠DBC=∠C=40°,∴∠ABD=∠DBC=40°,即BD是∠ABC的平分线,∵DF⊥AB,DE⊥BC,∴DF=DE,即点D到BA,BC的距离相等.【点睛】此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.24、(1)C(-3,0),y=2x+1;(2)①;②(0,7)或(0,-1)【解析】
(1)利用等腰三角形的三线合一的性质求出点C的坐标,再利用待定系数法求解即可.(2)①如图,取点Q(-1,3),连接BQ,DQ,DQ交AB于E.证明△QDB是等腰直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拉森钢板桩支护设计方案
- 箱涵施工成本控制方案
- 2024-2030年中国航空金融行业商业创新模式及投资策略分析报告
- 2024-2030年中国聚四氟乙烯阀芯产业未来发展趋势及投资策略分析报告
- 2024-2030年中国老鹰茶行业市场竞争力策略及未来前景展望报告
- 2024-2030年中国缝合线行业竞争格局及未来发展策略分析报告
- 高校体育教学工作总结
- 海洋生态法规与政策方案
- 2024-2030年中国第三代水果市场未来潜力分析及投资策略研究报告
- 2024-2030年中国社区O2O行业商业模式分析及投资战略规划研究报告
- 2024秋期国家开放大学专科《高等数学基础》一平台在线形考(形考任务一至四)试题及答案
- 实验七二苯甲醇的制备
- 雷沃十年十大影响力事件评选活动方案
- 肺癌化疗临床路径
- 全员育人导师制工作手册
- 各种型钢理论截面积、理论表面积、理论重量对照表
- 部门服务满意度评分表
- 第十章销售团队的激励机制
- 《蚂蚁做操》说课稿
- 《危险驾驶罪》PPT课件.ppt
- (完整版)PD、QC有限快充的知识讲解
评论
0/150
提交评论