湖南省衡阳市衡阳县2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
湖南省衡阳市衡阳县2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
湖南省衡阳市衡阳县2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
湖南省衡阳市衡阳县2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
湖南省衡阳市衡阳县2024年数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市衡阳县2024年数学八年级下册期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.化简的结果是A.+1 B. C. D.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A. B. C. D.3.无论a取何值时,下列分式一定有意义的是()A. B. C. D.4.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.88x=80x-2 B.885.如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为().A. B. C.16 D.6.以下列各组数据中,能构成直角三角形的是()A.2,3,4 B.3,4,7 C.5,12,13 D.1,2,37.等边三角形的边长为2,则该三角形的面积为()A. B.2 C.3 D.48.下列各式成立的是A. B. C. D.9.在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(﹣2,3) C.(2,3) D.(2,﹣3)10.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,5011.在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为()A.2 B.125 C.4 D.12.如图,一个运算程序,若需要经过两次运算才能输出结果,则的取值范围为A. B. C. D.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为_____.14.如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________

。15.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则的最大值为_____.16.如图,在中,,,,为上一点,,将绕点旋转至,连接,分别为的中点,则的最大值为_________.17.如图,在平面直角坐标系中,正方形的边长为2,点的坐标为.若直线与正方形有两个公共点,则的取值范围是____________.18.如图,点在的平分线上,,垂足为,点在上,若,则__.三、解答题(共78分)19.(8分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米.(,结果精确到).20.(8分)利用幂的运算性质计算:21.(8分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.(1)求直线和直线的解析式;(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.22.(10分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.23.(10分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.(1)证明:;(2)当时,六边形周长的值是否会发生改变,请说明理由;(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.24.(10分)甲、乙两名射击运动员最近5次射击的成绩如下(单位:环):甲:7、8、2、8、1.乙:1、7、5、8、2.(1)甲运动员这5次射击成绩的中位数和众数分别是多少?(2)求乙运动员这5次射击成绩的平均数和方差.25.(12分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.26.为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:(1)求所抽取的样本的容量;(2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?(3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?(4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:.故选D.2、C【解析】

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:观察四个选项中的图形,只有C符合中心对称的定义.【点睛】本题考察了中心对称的含义.3、D【解析】试题解析:当a=0时,a2=0,故A、B中分式无意义;当a=-1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选D.考点:分式有意义的条件.4、D【解析】

关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.【详解】乙队用的天数为:80x,甲队用的天数为:88x+2.则所列方程为:故选D.【点睛】本题考查了由实际问题抽象出分式方程,找到相应的等量关系是解决问题的关键,注意工作时间=工作总量÷工作效率.5、B【解析】

由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.【详解】∵菱形ABCD中,∠D=135°,

∴∠BCD=45°,

∵BE⊥CD于E,FG⊥BC于G,

∴△BFG与△BEC是等腰直角三角形,

∵∠GCF=∠ECF,∠CGF=∠CEF=90°,

CF=CF,

∴△CGF≌△CEF(AAS),

∴FG=FE,CG=CE,

设BG=FG=EF=x,

∴BF=x,

∵△BFG的周长为4,

∴x+x+x=4,

∴x=4-2,

∴BE=2,

∴BC=BE=4,

∴菱形ABCD的面积=4×2=8,

故选:B.【点睛】考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.6、C【解析】

根据勾股定理逆定理逐项计算判断即可.【详解】详解:A.∵22+32=13≠42,∴2,3,4不能构成直角三角形;B.∵32+42=25≠72,∴3,4,7不能构成直角三角形;C.∵52+122=169=132,∴5,12,13能构成直角三角形;D.∵12+22=5≠32,∴1,2,3不能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.7、A【解析】分析:如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;详解:作CD⊥AB,

∵△ABC是等边三角形,AB=BC=AC=2,

∴AD=1,

∴在直角△ADC中,

CD===,

∴S△ABC=×2×=;

故选A.点睛:本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.8、D【解析】分析:根据二次根式的性质逐项化简即可.详解:A.∵,故不正确;B.∵,故不正确;C.∵当x<0时,,故不正确;D.∵,故正确;故选D.点睛:本题考查了二次根式的性质,熟练掌握是解答本题的关键.9、A【解析】

根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),故选:A.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.10、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.11、D【解析】

根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.【详解】解:设∠A=k,∠B=k,∠C=2k,

由三角形的内角和定理得,k+k+2k=180°,

解得k=45°,

所以,∠A=45°,∠B=45°,∠C=90°,

∴AC=BC=4,,

所以,△ABC的面积=12故选:D.【点睛】本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.12、C【解析】

输入x,需要经过两次运算才能输出结果,说明第一次运算的结果为:5x+2<37,经过第二次运算5(5x+2)+2≥37,两个不等式联立成为不等式组,解之即可.【详解】解:根据题意得:,

解得:1≤x<7,

即x的取值范围为:1≤x<7,

故选C.【点睛】本题考查一元一次不等式组的应用,正确找出等量关系,列出一元一次不等式组是解题的关键.二、填空题(每题4分,共24分)13、1【解析】

根据菱形的性质得出AC⊥BD,由勾股定理可求AD=CD=1,再根据平行四边形的判定定理得四边形OCED为平行四边形,由矩形的判定定理得出四边形OCED是矩形,则该矩形的对角线相等,即CD=OE=1.【详解】证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=AC=3,OD=BD=4,∴∠AOD=90°,∴AD==1=CD∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,又∵AC⊥BD∴四边形OCED为矩形∴CD=OE=1故答案为:1【点睛】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.14、【解析】

证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°AC=CD=2,∠ACD=90°△ACD为等腰直角三角形∴BC=AD==.故答案是:.【点睛】考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.15、【解析】

作辅助线,构建30度的直角三角形将转化为NH,将,即:过A点作AM∥BC,过作交的延长线于点,,由△BCD围成的区域(包括各边)内的一点到直线AP的最大值时E在D点时,通过直角三角形性质和勾股定理求出DH’即可得到结论.【详解】解:过A点作AP∥BC,过作交的延长线于点,,,四边形是平行四边形,设,,∵∠ACB=90°,∠CAB=60°,∴∠CAM=90°,∠NAH=30°,中,,∵NE∥AC,NH∥AC,∴E、N、H在同一直线上,,由图可知:△BCD围成的区域(包括各边)内的一点到直线AM距离最大的点在D点,过D点作,垂足为.当在点时,=取最大值.∵∠ACB=90°,∠A=60°,AB=6,,∴AC=3,AB=,四边形ACGH’是矩形,∴,∵△BCD为等边三角形,,∴=,∴,∴的最大值为,故答案为.【点睛】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度.解题关键是根据在直角三角形中,30°角所对的边等于斜边的一半对进行转化,使得最大值问题转化为点到直线的距离解答.16、+2【解析】

利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【详解】解:如图,取AB的中点M,连接MF和CM,

∵将线段AD绕点A旋转至AD′,

∴AD′=AD=1,

∵∠ACB=90°,

∵AC=6,BC=2,

∴AB=.

∵M为AB中点,

∴CM=,

∵AD′=1.

∵M为AB中点,F为BD′中点,

∴FM=AD′=2.

∵CM+FM≥CF,

∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,

此时CF=CM+FM=+2.

故答案为:+2.【点睛】此题考查旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.17、﹣1<b<1【解析】

当直线y=x+b过D或B时,求得b,即可得到结论.【详解】∵正方形ABCD的边长为1,点A的坐标为(1,1),∴D(1,3),B(3,1).当直线y=x+b经过点D时,3=1+b,此时b=1.当直线y=x+b经过点B时,1=3+b,此时b=﹣1.所以,直线y=x+b与正方形有两个公共点,则b的取值范围是﹣1<b<1.故答案为﹣1<b<1.【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.18、1.【解析】

作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【详解】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=1,故答案为:1.【点睛】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.三、解答题(共78分)19、【解析】

设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.【详解】解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.

依题意,得解得(不合题意,舍去).经检验,是原方程的根.雕像下部设计的高度应该为:1.236m故答案为:1.236m【点睛】本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.20、4【解析】

运用幂的运算法则进行运算即可【详解】【点睛】本题考查幂的运算,熟练掌握幂的运算规则是集体关键21、(1)y=-x+1,y=x;(2)m=或;(3)S=.【解析】

(1)理由待定系数法即可解决问题;

(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;

(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.【详解】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=-x+1.

设直线OD的解析式为y=mx,则有3m=1,m=,

∴直线OD的解析式为y=x.(2)存在.

理由:如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,

∴|-m+1-|=3,

解得m=或.(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.

设O′C′与x轴交于点E,与直线OD交于点P;

设A′C′与x轴交于点F,与直线OD交于点Q.因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).

设直线O′C′的解析式为y=3x+b,

将C′(1+t,3-t)代入得:b=-1t,

∴直线O′C′的解析式为y=3x-1t.∴E(,0).

联立y=3x-1t与y=,解得x=.

∴S=S△OFQ-S△OEP=OF•FQ-OE•PG=(1+t)()-=.【点睛】本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.22、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.【解析】

(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.【详解】解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,∴A(0,3),B(,0),∴OA=3,OB=,∴tan∠ABO==,∴∠ABO=60°,∵BD平分∠ABO,∴∠DBO=30°,∴OD=OB•tan30°=1,DB=2OD=2,∴AD=DB=2,∴AE=EB,∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,∴DE=DO=1.(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.∵E′(,),D′(2,﹣1),∴直线D′E′的解析式为,直线BC的解析式为y=x﹣3,由,解得,,∴F.把点F向上平移3个单位,向右平移个单位得到点G,∴G().(3)以点A为圆心,以AE为半径作⊙A,则DE为⊙A的切线.①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.∵CM=CN,∠MCN=30°,∴∠CNM=∠CMN=75°,∴∠ANE=∠CNM=75°,∴∠EAN=15°,∴∠PAN=∠ANP=15°,∴∠EPN=30°,∴PN=AP=2x,PE=x,∴2x+x=,∴x=2﹣3,∴AN=,∴CM=CN==.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形,PB=AE=,在Rt△PBM中,∠PBM=30°,∴BM=2,∴CM=BC﹣BM=2﹣2.③如图2﹣1中.CM=CN时,同法可得CM=.④如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.∵CD=6+2=8,∠DCP=30°,∴PC=PM=4,∴CM=8综上所述,满足条件的CM的值为或或2﹣2或8.【点睛】本题考查一次函数的应用、锐角三角函数、勾股定理、解直角三角形、等腰三角形的判定和性质、轴对称最短问题等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)见解析;(2)不变,见解析;(3)能,或【解析】

(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;

(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;

(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.【详解】解:折叠后落在上,平分,四边形为菱形,同理四边形为菱形,四边形为平行四边形,.不变.理由如下:由得四边形为菱形,为等边三角,为定值.记与交于点.当六边形的面积为时,由得记与交于点,同理即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论