安徽省合肥市第四十五中学2024年八年级数学第二学期期末监测模拟试题含解析_第1页
安徽省合肥市第四十五中学2024年八年级数学第二学期期末监测模拟试题含解析_第2页
安徽省合肥市第四十五中学2024年八年级数学第二学期期末监测模拟试题含解析_第3页
安徽省合肥市第四十五中学2024年八年级数学第二学期期末监测模拟试题含解析_第4页
安徽省合肥市第四十五中学2024年八年级数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市第四十五中学2024年八年级数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知甲.乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大 B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大 D.甲.乙两组数据的数据波动不能比较2.下列二次根式中,与是同类二次根式的是A. B. C. D.3.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个 B.2个 C.3个 D.4个4.下列各曲线中不能表示y是x的函数是()5.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形6.下列式子为最简二次根式的是()A.5 B.12 C.a2 D.7.一次函数在平面直角坐标系内的图像如图所示,则k和b的取值范围是()A., B., C., D.,8.计算一组数据方差的算式为S2=[(x1-10)2+(x2-10)2+…+(x5-10)2],由此得到的信息中,不正确的是()A.这组数据中有5个数据 B.这组数据的平均数是10C.计算出的方差是一个非负数 D.当x1增加时,方差的值一定随之增加9.某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是()A.正方形 B.正六边形 C.正八边形 D.正十二边形10.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16crn B.14cm C.12cm D.8cm11.一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为()A.25 B.16 C.20 D.1012.如图,△ABC的周长为28,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,▱ABCD中,,,垂足为点若,则的度数为______.14.根据图中的程序,当输入x=2时,输出结果y=________.15.如图,于点E,于点F,,求证:.试将下面的证明过程补充完整填空:证明:,已知______同位角相等,两直线平行,两直线平行,同旁内角互补,又已知,______,同角的补角相等______内错角相等,两直线平行,______16.如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为______度.17.若分式方程有增根,则a的值为_____.18.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.三、解答题(共78分)19.(8分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2400元;奖励工资,每销售一件产品,奖励10元.(1)设某销售员月销售产品件,他应得的工资为元,求与之间的函数关系式;(2)若该销售员某月工资为3600元,他这个月销价了多少件产品?(3)要使月工资超过4200元,该月的销售量应当超过多少件?20.(8分)解下列不等式,并把解集表示在数轴上.(1)(2)21.(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?22.(10分)化简或计算:(1)()2•(﹣)(2)÷﹣×23.(10分)甲、乙两名射击运动员进行射击比赛,两人在相同的条件下各射击10次,射击的成绩如图所示.根据图中信息,解答下列问题:(1)算出乙射击成绩的平均数;(2)经计算,甲射击成绩的平均数为8,乙射击成绩的方差为1.2,请你计算出甲射击成绩的方差,并判断谁的射击成绩更加稳定.24.(10分)解方程:=+1.25.(12分)解不等式组:,并将解集在数轴上表示出来,且写出它的整数解.26.如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:先比较两组数据的方差,再根据方差的意义即可判断.∵∴乙组数据比甲组数据波动大故选B.考点:方差的意义点评:生活中很多数据的收集整理都涉及方差的意义应用,故此类问题在中考中较为常见,常以填空题、选择题形式出现,难度一般,需多加留心.2、D【解析】

首先把四个选项中的二次根式化简,再根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得答案.【详解】解:A、与不是同类二次根式;B、与不是同类二次根式;C、与不是同类二次根式;D、与是同类二次根式;故选:D.【点睛】此题主要考查了同类二次根式,关键是掌握同类二次根式的定义.3、C【解析】①已知∠A=∠B+∠C,由∠A+∠B+∠C=180°,得2∠A=180°,所以∠A=90°,它是直角三角形;②三个内角之比为3∶4∶1.则这三个内角分别为41°,60°,71°,它是锐角三角形;③④可由勾股定理的逆定理判定是直角三角形.因此①③④是直角三角形,故选C.4、B【解析】A、能表示y是x的函数,故本选项不符合题意;B、能表示y是x的函数,故本选项不符合题意;C、不能表示y是x的函数,故本选项符合题意;D、能表示y是x的函数,故本选项不符合题意.故选C.5、C【解析】

先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【点睛】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.6、A【解析】

解:选项A,被开方数不含分母;被开方数不含能开得尽方的因数或因式,A符合题意;选项B,被开方数含能开得尽方的因数或因式,B不符合题意;选项C,被开方数含能开得尽方的因数或因式,C不符合题意;选项D,被开方数含分母,D不符合题意,故选A.7、A【解析】

根据一次函数的图象经过的象限与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、三象限,

∴k>0,b>0.

故选A.【点睛】本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.8、D【解析】

根据方差的公式:S2[(x1)2+(x2)2+…+(xn)2],直接选择答案.【详解】在方差的计算公式中,n代表容量,代表平均数,故A正确,B正确;显然S2≥0,C正确;当x1增大时,要看|x1|的变化情况,方差可能变大,可能变小,可能不变,故D错误.故选D.【点睛】本题考查了方差的计算公式,熟练掌握每一个字母所代表的意义.9、C【解析】

根据密铺的条件得,两多边形内角和必须凑出,进而判断即可.【详解】解:、正方形的每个内角是,,能密铺;、正六边形每个内角是,,能密铺;、正八边形每个内角是,与无论怎样也不能组成的角,不能密铺;、正十二边形每个内角是,,能密铺.故选:C.【点睛】本题考查两种正多边形的镶嵌应符合多个内角度数和等于.10、D【解析】∵平行四边形ABCD的周长为40cm,,∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,∴2(AB+BC)=40,∵BC=AB,∴BC=8cm,故选D.11、C【解析】

根据直角三角形的性质可得出斜边的长,进而根据三角形的面积公式求出此三角形的面积.【详解】解:根据直角三角形斜边上的中线等于斜边的一半知:此三角形的斜边长为5×2=10;

所以此三角形的面积为:×10×4=1.故选:C.【点睛】本题考查直角三角形的性质以及三角形的面积计算方法.掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12、B【解析】

根据已知条件证明△AQB≌△EQB及△APC≌△DPC,再得出PQ是△ADE的中位线,根据题中数据,根据DE=BE+CD-BC求出DE的长度,最后由中位线的性质即可求出PQ的长度.【详解】解:∵BQ平分∠ABC,∴∠ABQ=∠EBQ,∵BQ⊥AE,∴∠AQB=∠EQB=90°,在△AQB与△EQB中∴△AQB≌△EQB(ASA)∴AQ=EQ,AB=BE同理可得:△APC≌△DPC(ASA)∴AP=DP,AC=DC,∴P,Q分别为AD,AE的中点,∴PQ是△ADE的中位线,∴PQ=,∵△ABC的周长为28,BC=12,∴AB+AC=28-12=16,即BE+CD=16,∴DE=BE+CD-BC=16-12=4∴PQ=2故答案为:B.【点睛】本题主要考查了中位线的性质,涉及全等三角形的判定及三角形周长计算的问题,解题的关键是根据全等三角形的性质得出中位线.二、填空题(每题4分,共24分)13、25°【解析】

由等腰三角形性质得∠ACB=∠B=由平行四边形性质得∠DAE=∠ACB=65〬,由垂直定义得∠ADE=90〬-∠DAE=90〬-65〬.【详解】因为,,所以,∠ACB=∠B=因为,四边形ABCD是平行四边形,所以,AD∥BC,所以,∠DAE=∠ACB=65〬,又因为,,所以,∠ADE=90〬-∠DAE=90〬-65〬=25〬.故答案为25〬【点睛】本题考核知识点:平行四边形,等腰三角形,垂直定义.解题关键点:由所求推出必知,逐步解决问题.14、2【解析】∵x=2时,符合x>1的条件,∴将x=2代入函数y=−x+4得:y=2.故答案为2.15、垂直的定义;;BC;两直线平行,同位角相等

【解析】

根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.【详解】证明:,(垂直的定义),(同位角相等,两直线平行),(两直线平行,同旁内角互补),又,(同角的补角相等),(内错角相等,两直线平行),(两直线平行,同位角相等).故答案为:垂直的定义;;;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.16、1【解析】

根据邻补角的和是180°,结合已知条件可求∠COE的度数.【详解】∵∠1=55°,∴∠COE=180°-55°=1°.故答案为1.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.17、3【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:分式方程去分母得:x﹣5(x﹣3)=a,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:a=3,故答案为:3【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.18、【解析】

过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.三、解答题(共78分)19、(1);(2)他这个月销售了120件产品;(3)要使月工资超过4200元,该月的销售量应当超过180件.【解析】

(1)根据销售员的奖励工资由两部分组成,即可得到y与x之间的函数关系式;(2)根据销售员某月工资为3600元,列方程求解即可;(3)根据月工资超过4200元,列不等式求解即可.【详解】(1)由题可得,与之间的函数关系式是:(2)令,则,解得:,∴他这个月销售了120件产品;(3)由得,∴要使月工资超过4200元,该月的销售量应当超过180件【点睛】此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系以及不等量关系分别求解.20、(1),见解析;(2),见解析【解析】

(1)去分母,解不等式;(2)分别解不等式,再求公共解集.【详解】解:(1)解集在数轴表示为:(2)解集在数轴表示为:【点睛】考核知识点:解不等式组.掌握解不等式基本方法是关键.21、(1)80人;(2)11.5元【解析】

(1)参加这次夏令营活动的初中生所占比例是:1-10%-20%-30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出答案.【详解】(1)参加这次夏令营活动的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;(2)小学生、高中生和大学生的人数分别为:200×20%=40,200×30%=60,200×10%=20,所以平均每人捐款为:(元).【点睛】本题考查了扇形统计图、加权平均数等知识.从扇形统计图中得出初中生所占比例是解题的关键.22、(1)﹣;(1)1﹣1.【解析】

(1)先算乘方,再算乘法即可;(1)先算除法和乘法,再化简即可.【详解】(1)原式==﹣;(1)原式=﹣=﹣=1﹣1.【点睛】本题考查了分式的混合运算,二次根式的混合运算,熟练掌握分式和二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.23、(1)8;(2)乙.【解析】

(1)用乙10次射击的成绩之和除以10即可得;(2)根据方差的计算方法求出甲的方差,方差小的成绩更加稳定.【详解】解:(1);(2),∵;∴乙的射击成绩更稳定.故答案为(1)8;(2)乙.【点睛】本题考查了求平均数和方差,以及利用方差做判断,方差越小,数据的波动越小,更稳定.24、.

【解析】分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论