版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省隆化县2024届八年级数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列式子是分式的是()A. B. C.x2y D.2.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且3.在如图所示的计算程序中,y与x之间的函数关系式所对应的图象是()A. B.C. D.4.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A. B. C. D.5.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.6.若关于x的分式方程的解为x=2,则m的值为().A.2 B.0 C.6 D.47.一次信息技术模拟测试后,数学兴趣小组的同学随机统计了九年级20名学生的成绩记录如下:有5人得10分,6人得9分,5人得8分,4人得7分这20名学生成绩的中位数和众数分别是A.10分,9分 B.9分,10分 C.9分,9分 D.分,9分8.均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的()A. B. C. D.9.如图,在矩形中,动点从点开始沿的路径匀速运动到点停止,在这个过程中,的面积随时间变化的图象大致是()A. B.C. D.10.如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为()A.1 B. C.2﹣ D.﹣111.如图,在平行四边形中,是边上的中点,是边上的一动点,将沿所在直线翻折得到,连接,则的最小值为()A. B. C. D.12.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数二、填空题(每题4分,共24分)13.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是_____.14.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.15.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.16.已知,则___________.17.已知,则_______.18.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是三边的中点,CF=8cm,则线段DE=________cm.三、解答题(共78分)19.(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.20.(8分)如图,在的正方形网格中,横、纵坐标均为整数的点叫格点.己知,,均在格点上.(1)请建立平面直角坐标系,并直接写出点坐标;(2)直接写出的长为;(3)在图中仅用无刻度的直尺找出的中点:第一步:找一个格点;第二步:连接,交于点,即为的中点;请按步骤完成作图,并写出点的坐标.21.(8分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.22.(10分)如图,在▱ABCD中,点O是对角线AC、BD的交点,AD⊥BD,且AB=10,AD=6,求AC的长.(结果保留根号)23.(10分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.24.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.(12分)我市某火龙果基地销售火龙果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克6.8元,由基地免费送货;方案B:每千克6元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种火龙果的应付款y(元)与购买数量x(kg)之间的函数表达式;(2)求购买量在什么范围时,选择方案A比方案B付款少?(3)某水果批发商计划用30000元,选用这两种方案中的一种,购买尽可能多的这种火龙果,他应选择哪种方案?26.如图,四边形ABCD是菱形,BE⊥AD,BF⊥CD,垂足分别为点E,F.1求证:BE=BF;2当菱形ABCD的对角线AC=8,BD=6时,求BE的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:,x2y,均为整式,是分式,故选:B【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2、C【解析】
利用一元二次方程的定义和判别式的意义得到k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,然后求出两不等式的公共部分即可.【详解】解:根据题意得k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,解得:且.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.3、A【解析】
根据程序得到函数关系式,即可判断图像.【详解】解:根据程序框图可得y=﹣x×2+3=﹣2x+3,y=2x+3的图象与y轴的交点为(0,3),与x轴的交点为(1.5,0).故选:A.【点睛】此题主要考查一次函数的图像,解题的关键是根据程序得到函数解析式.4、C【解析】
根据中心对称图形的定义和图案特点即可解答.【详解】解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、是中心对称图形,故本选项正确;
D、不是中心对称图形,故本选项错误.
故选:C.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误,故选C.【点睛】本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.6、C【解析】
根据分式方程的解为x=2,把x=2代入方程即可求出m的值.【详解】解:把x=2代入得,,解得m=6.故选C.点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.7、C【解析】
根据中位数和众数的定义进行分析.【详解】20名学生的成绩中第10,11个数的平均数是9,所以中位数是9,9分出现次数最多,所以众数是9.故选:C【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的定义.8、D【解析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.9、B【解析】
根据三角形的面积可知当P点在AB上时,的面积随时间变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,的面积随时间变大而变小.【详解】解:当P点在AB上时,的面积=,则的面积随时间变大而变大;当P点在AD上时,的面积=,则的面积不会发生改变;当P点在CD上时,的面积=,则的面积随时间变大而变小,且函数图象的斜率应与P点在AB上时相反;综上可得B选项的图象符合条件.故选B.【点睛】本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.10、C【解析】
由菱形ABCO,∠AOC=60°,由解直角三角形可以设A(m,m),又点A在反比例函数的图像上,带入可以求出A的坐标,进而可以求出OA的长度,即OC可求.再根据菱形ABCO,∠AOC=60°,可知∠BOC=30°,可设E(n,0),则D(n,n),带入反比例函数的解析式可以求出E点坐标,于是CE=OC-OE,可求.【详解】解:∵四边形ABCO为菱形,∠AOC=60°,∴可设A(m,m),又∵A点在反比例函数y=上,∴m2=2,得m=(由题意舍m=-),∴A(,),OA=2,∴OC=OA=2,又∵四边形ABCO为菱形,∠AOC=60°,OB为四边形ABCO的对角线,∴∠BOC=30°,可设D(n,n),则E(n,0),∵D在反比例函数y=上,∴n2=2,解得n=(由题意舍n=-),∴E(,0),∴OE=,则有CE=OC-OE=2-.故答案选C.【点睛】掌握菱形的性质,理解“30°角所对应的直角边等于斜边的一半”,再依据勾股定理分别设出点A和点D的坐标,代入反比例函数的解析式.灵活运用菱形和反比例函数的性质和解直角三角形是解题的关键.11、C【解析】
如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线,与线段CE重合时,线段长度最短,可以求出最小值.【详解】如图,连接EC,过点E作EMCD交CD的延长线于点M.四边形ABCD是平行四边形,E为AD的中点,又,根据勾股定理得:根据翻折的性质,可得,当折线,与线段CE重合时,线段长度最短,此时=.【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.12、B【解析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.二、填空题(每题4分,共24分)13、y=1x1﹣1.【解析】
利用正比例函数的定义,设y=k(x1﹣1),然后把x=1,y=6代入求出k即可得到y与x的函数关系式.【详解】设y=k(x1﹣1),把x=1,y=6代入得:k×(11﹣1)=6,解得:k=1,所以y=1(x1﹣1),即y=1x1﹣1.故答案为y=1x1﹣1.【点睛】本题考查了待定系数法求函数的解析式:在利用待定系数法求函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.14、50【解析】
在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.【详解】由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,解得,BC=50,∴PC=50(米),答:灯塔P到环海路的距离PC等于50米.故答案为:50【点睛】此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.15、.【解析】
小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,∴两次摸出的球都是红球的概率为:×=.故答案为:.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.16、【解析】
将二次根式化简代值即可.【详解】解:所以原式.故答案为:【点睛】本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.17、【解析】
先对变形,得到b=,然后将b=代入化简计算即可.【详解】解:由,b=则故答案为-2.【点睛】本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系18、8【解析】分析:由已知条件易得CF是Rt△ABC斜边上的中线,DE是Rt△ABC的中位线,由此可得AB=2CF=2DE,从而可得DE=CF=8cm.详解:∵在Rt△ABC中,∠ACB=90°,点D、E、F分别是三边的中点,∴AB=2CF,AB=2DE,∴DE=CF=8(cm).故答案为:8.点睛:熟记:“直角三角形斜边上的中线等于斜边的一半和三角形的中位线等于第三边的一半”是解答本题的关键.三、解答题(共78分)19、(1);;;(2);(3)共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;【解析】
(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)设用辆乙,则甲种客车数为:辆,代入计算即可(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名。依题意,列方程组,解得,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;答:老师有16名,学生有284名;租用客车总数为8辆。(2)租用辆乙,甲种客车数为:辆,.(3)租车总费用不超过元,租用乙种客车不少于辆,,解得:,为使名师生都有座,,解得:,取整数为.共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;由(2),随的减小而减小,且为整数,当时,元,故最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;【点睛】本题考查二元一次方程组的应用,一次函数以及一元一次不等式的应用,正确列出式子是解题关键.20、(1)图见解析,;(2);(3)图见解析,【解析】
(1)根据,建立如图平面直角坐标系即可;(2)利用勾股定理即可解决问题;(3)构造平行四边形即可解决问题.【详解】解:(1)∵,∴建立如图平面直角坐标系,∴;(2)AC==;(3)如图,∵AB=CD=,AD=BC=,∴四边形ABCD是平行四边形,∴点D即为所求,D(3,-1).【点睛】本题考查作图-复杂作图,平面直角坐标系,平行四边形都是性质和判定等知识,了解题的关键是灵活运用所学知识解决问题,属于中考常考题型21、(1)△ABC是直角三角形(2)5【解析】
(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;
(2)根据三角形的周长和面积公式解答即可.【详解】(1)△ABC是直角三角形,由勾股定理可得:ACBCAB∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)△ABC的周长为:AC+BC+AB=5+2△ABC的面积为:12【点睛】本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.22、AC=4.【解析】
首先利用勾股定理求得对角线的长,然后求得其一半的长,再次利用勾股定理求得的长后乘以2即可求得的长.【详解】解:,,,,四边形是平行四边形,,,,.【点睛】本题考查了平行四边形的性质,解题的关键是两次利用勾股定理求解相关线段的长.23、(1);(2)当t=4时,四边形BQPM是菱形.【解析】
(1)由点A、B的坐标,利用待定系数法求得直线AB的函数解析式;(2)当t=4时,求得BQ、OP的长度,结合勾股定理得到PQ=BQ;由相似三角形:△APM∽△AOB的对应边相等求得PM的长度,得到BQ=PM,所以该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知当t=4时,四边形BQPM是菱形.【详解】解:(1)设直线AB的解析式为:y=kx+b(k≠0).把点A(1,0)、B(0,4)分别代入,得解得.故直线AB的函数解析式是:y=﹣x+1.故答案是:y=﹣x+1.(2)当t=4时,四边形BQPM是菱形.理由如下:当t=4时,BQ=,则OQ=.当t=4时,OP=,则AP=.由勾股定理求得PQ=.∵PM∥OB,∴△APM∽△AOB,∴,即,解得PM=.∴四边形BQPM是平行四边形,∴当t=4时,四边形BQPM是菱形.【点睛】考查了一次函数综合题,熟练掌握待定系数法求一次函数解析式,菱形的判定与性质,勾股定理,相似三角形的判定与性质,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.24、解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠3,2=∠1.∵MN∥BC,∴∠1=∠3,3=∠1.∴∠1=∠2,∠3=∠2.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠3,∠2=∠1,∴∠2+∠2=∠3+∠1=90°.∵CE=12,CF=3,∴.∴OC=EF=1.3.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报书:大学生社会观念的群体极化态势、机理及引导策略研究
- 2024年股权收益分配协议
- 课题申报书:创业团队集体身份视角下的商业模式调整过程研究
- 2025年度矿产产品进出口代理合同3篇
- 2025版跨境电商贷款及物流保险担保协议2篇
- 2025年度个人住宅按揭贷款提前还款及房屋转让合同3篇
- 2025年度矿泉水水源地生态补偿合同范本3篇
- 2025版高端医疗器械模具设计与加工合同范本3篇
- 2024年物流仓储资源优化配置与运输管理合同3篇
- 2025年度网络安全安保服务合同终止及风险评估协议3篇
- 7.4 等差数列与等比数列的应用(课件)-【中职专用】高二数学(高教版2021·拓展模块一下册)
- TDT 1015.2-2024 地籍数据库 第2部分:自然资源(正式版)
- 关于大数据的职业生涯规划书课件
- 部编版高中语文必修上册第二单元测试题及答案
- 电子化文件与信息管理制度
- 2024年高考地理试卷(浙江)(1月)(解析卷)
- 心理健康讲座(课件)-小学生心理健康
- 《肠造口并发症的分型与分级标准(2023版)》解读
- 名画中的瘟疫史智慧树知到期末考试答案章节答案2024年上海健康医学院
- 《跟上兔子》绘本三年级第1季One-Day教学课件
- 家长会课件:小学三年级家长会 课件
评论
0/150
提交评论