版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省大连瓦房店市第六高级中学高三3月份模拟考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.2.已知函数,,的零点分别为,,,则()A. B.C. D.3.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.4.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.4 B.6 C.3 D.85.函数的大致图象是A. B. C. D.6.的内角的对边分别为,已知,则角的大小为()A. B. C. D.7.若,则的虚部是()A. B. C. D.8.如图所示的程序框图输出的是126,则①应为()A. B. C. D.9.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.10.集合,,则=()A. B.C. D.11.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数满足,当时,,若函数在上有1515个零点,则实数的范围为___________.14.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为.15.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________16.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知实数x,y,z满足,证明:.18.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:19.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)20.(12分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.21.(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;(Ⅰ)求椭圆的标准方程;(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.2、C【解析】
转化函数,,的零点为与,,的交点,数形结合,即得解.【详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故选:C【点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.3、B【解析】
变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)4、A【解析】
根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,,则,即,故函数在上单调递增,故,令,,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.5、A【解析】
利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.6、A【解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.7、D【解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.8、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.∵S=2+22+…+21=121,故①中应填n≤1.故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.9、C【解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.10、C【解析】
先化简集合A,B,结合并集计算方法,求解,即可.【详解】解得集合,所以,故选C.【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.11、B【解析】
先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.12、D【解析】
利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由已知,在上有3个根,分,,,四种情况讨论的单调性、最值即可得到答案.【详解】由已知,的周期为4,且至多在上有4个根,而含505个周期,所以在上有3个根,设,,易知在上单调递减,在,上单调递增,又,.若时,在上无根,在必有3个根,则,即,此时;若时,在上有1个根,注意到,此时在不可能有2个根,故不满足;若时,要使在有2个根,只需,解得;若时,在上单调递增,最多只有1个零点,不满足题意;综上,实数的范围为.故答案为:【点睛】本题考查利用导数研究函数的零点个数问题,涉及到函数的周期性、分类讨论函数的零点,是一道中档题.14、.【解析】.15、【解析】
利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为.【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题.16、【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,...【点睛】本题考查柯西不等式的应用,属于基础题.18、(1);(2)见解析.【解析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.19、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,结合题意得出,推出矛盾,可得出①②不能同时成为的条件,由此可得出结论;(2)在符合条件的两组三角形中利用余弦定理和正弦定理求出对应的边和角,然后利用三角形的面积公式可求出的面积.【详解】(1)由①得,,所以,由②得,,解得或(舍),所以,因为,且,所以,所以,矛盾.所以不能同时满足①,②.故满足①,③,④或②,③,④;(2)若满足①,③,④,因为,所以,即.解得.所以的面积.若满足②,③,④由正弦定理,即,解得,所以,所以的面积.【点睛】本题考查三角形能否成立的判断,同时也考查了利用正弦定理和余弦定理解三角形,以及三角形面积的计算,要结合三角形已知元素类型合理选择正弦定理或余弦定理解三角形,考查运算求解能力,属于中等题.20、(1)(2)是定值,详见解析【解析】
(1)根据长轴长为,离心率,则有求解.(2)设,则,直线,令得,,则,直线,令,得,则,再根据求解.【详解】(1)依题意得,解得,则椭圆的方程.(2)设,则,直线,令得,,则,直线,令,得,则,.【点睛】本题主要考查椭圆的方程及直线与椭圆的位置关系,还考查了平面几何知识和运算求解的能力,属于中档题.21、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;(Ⅱ)设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围.【详解】(Ⅰ),,,,,由,得,又,,解得:,,.椭圆的标准方程为;(Ⅱ)设直线,则与直线的交点,又,设直线,联立,消可得.解得,,联立,得,,直线,联立,解得,,,,,,,,函数在上单调递增,,.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.22、(1);(2).【解析】
(1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版:融资租赁合同
- 2024年某商业大厦消防系统工程承包合同版B版
- 2025专利实施许可合同2
- 2025产品代加工合同范文
- 研发中心土地租赁合同乡镇
- 2025不动产赠与合同
- 食品加工厂设备维护
- 医疗器械销售代表招聘协议
- 精密仪器批次管理办法
- 河北省邢台市2024届高三上学期期末考试数学试题(解析版)
- 2014光伏发电站功率控制能力检测技术规程
- 第15课 有创意的书(说课稿)2022-2023学年美术四年级上册 人教版
- 2023年上海交通大学827材料科学基础试题
- 信访面试资料
- 焊接工艺评定转化表
- 《报告文学研究》(07562)自考考试复习题库(含答案)
- 拼多多运营合作合同范本
- 小学英语-module10 unit2 eat vegetables every day教学设计学情分析教材分析课后反思
- Unit3Timeschange!Period1Startingout教案-高中英语外研版选择性
- 全国大学英语四、六级考试缺考申请表
- 美国特朗普-课件
评论
0/150
提交评论