山东省临沂市费县2024年八年级数学第二学期期末联考试题含解析_第1页
山东省临沂市费县2024年八年级数学第二学期期末联考试题含解析_第2页
山东省临沂市费县2024年八年级数学第二学期期末联考试题含解析_第3页
山东省临沂市费县2024年八年级数学第二学期期末联考试题含解析_第4页
山东省临沂市费县2024年八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂市费县2024年八年级数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,正比例函数y1=-2x的图像与反比例函数y2=kx的图像交于A、B两点.点C在x轴负半轴上,AC=AO,△A.-4 B.﹣8 C.4 D.83.如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A,C两点的坐标分别为(2,0),(1,2),点B在第一象限,将直线沿y轴向上平移m个单位.若平移后的直线与边BC有交点,则m的取值范围是

()A. B. C. D.4.下列四种标志图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大 B.不变C.逐渐变小 D.先变小后变大6.无理数2﹣3在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间7.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.18.点A(m﹣1,n+1)在平面直角坐标系中的位置如图所示,则坐标为(m+1,n﹣1)的点是()A.P点 B.B点 C.C点 D.D点9.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.4610.化简的结果是().A. B. C. D.11.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.1012.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.14.已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____15.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为______.16.如图,已知一次函数y=−x+b和y=ax−2的图象交于点P(−1,2),则根据图象可得不等式−x+b>ax−2的解集是______.17.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.18.已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.三、解答题(共78分)19.(8分)一个容器盛满纯药液,第一次倒出一部分纯药液后,用水加满;第二次又倒出同样多的药液,若此时容器内剩下的纯药液是,则每次倒出的液体是多少?20.(8分)将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.21.(8分)如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的倍,那么称这样的方程为“倍根方程”,例如,一元二次方程的两个根是和,则方程就是“倍根方程”.(1)若一元二次方程是“倍根方程”,则=.(2)若关于的一元二次方程是“倍根方程”,则,,之间的关系为.(3)若是“倍根方程”,求代数式的值.22.(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.23.(10分)如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.24.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.25.(12分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.26.先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.请你利用上述定理解决下面的问题:(1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);(2)如图2,已知AB∥CD,AD与BC相交于点O,试说明△ABO∽△DCO;(3)如图3,在平行四边形ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C,求证:△ABF∽△EAD.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【解析】

根据等腰三角形的性质及反比例函数k的几何意义即可求解.【详解】过点A作AE⊥x轴,∵AC=AO,∴CE=EO,∴S△ACO=2S△ACE∵△ACO的面积为8.∴k=8,∵反比例函数过二四象限,∴k=-8故选B【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.3、D【解析】

设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.【详解】解:设平移后的直线解析式为y=-2x+m.∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),∴点B(3,2).∵平移后的直线与边BC有交点,∴,解得:4≤m≤1.故选:D.【点睛】本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.4、B【解析】

根据轴对称图形和中心对称图形的意义逐个分析即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选B.【点睛】考核知识点:理解轴对称图形和中心对称图形的定义.5、B【解析】

根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=1,此题得解.【详解】解:设点C的坐标为(m,-m+4)(0<m<4),则CE=m,CD=-m+4,∴C矩形CDOE=2(CE+CD)=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.6、B【解析】

首先得出2的取值范围进而得出答案.【详解】∵2=,∴6<<7,∴无理数2-3在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7、B【解析】如图,过点P作PC垂直AO于点C,PD垂直BO于点D,根据角平分线的性质可得PC=PD,因∠AOB与∠MPN互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正确;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正确;四边形PMON的面积等于四边形PCOD的面积,(3)正确;连结CD,因PC=PD,PM=PN,∠MPN=∠CPD,PM>PC,可得CD≠MN,所以(4)错误,故选B.8、C【解析】

由(m﹣1,n+1)移动到(m+1,n﹣1),横坐标向右移动(m+1)﹣(m﹣1)=2个单位,纵坐标向下移动(n+1)﹣(n﹣1)=2个单位,依此观察图形即可求解.【详解】(m+1)﹣(m﹣1)=2,(n+1)﹣(n﹣1)=2,则点A(m﹣1,n+1)到(m+1,n﹣1)横坐标向右移动2个单位,纵坐标向下移动2个单位.故选:C.【点睛】此题考查了点的坐标,解题的关键是得到点的坐标移动的规律.9、C【解析】

∵四边形ABCD是平行四边形,∴AB=CD=5.∵△OCD的周长为23,∴OD+OC=23﹣5=18.∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36.故选C.10、B【解析】

根据三角形法则计算即可解决问题.【详解】解:原式,故选:B.【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.11、B【解析】

解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.12、D【解析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每题4分,共24分)13、2.5【解析】

先用待定系数法求出直线解析式,再将点A代入求解可得.【详解】解:将(-2,0)、(0,1)代入y=kx+b,得:,解得:∴y=x+1,将点A(3,m)代入,得:即故答案为:2.5【点睛】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.14、(-0.4,0)【解析】

点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标.【详解】解:点A(-2,2)关于x轴对称的点A'(-2,-2),

设直线A'B的解析式为y=kx+b,

把A'(-2,-2),B(2,3)代入,可得

,解得,

∴直线A'B的解析式为y=x+,

令y=0,则0=x+,

解得x=-0.4,

∴点P的坐标为(-0.4,0),

故答案为:(-0.4,0).【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.15、y=【解析】

由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(-3,),AD∥x轴,即可得到B(-3,),C(-1,),D(-1,);根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,),由点A′,C′在在反比例函数y=(x>0)的图象上,得到方程(-3+m)=(-1+m),即可求得结果.【详解】解:∵四边形ABCD是矩形,∴AB=CD=1,BC=AD=2,∵A(-3,),AD∥x轴,∴B(-3,),C(-1,),D(-1,);∵将矩形ABCD向右平移m个单位,∴A′(-3+m,),C(-1+m,),∵点A′,C′在反比例函数y=(x>0)的图象上,∴(-3+m)=(-1+m),解得:m=4,∴A′(1,),∴k=,∴反比例函数的解析式为:y=.故答案为y=.【点睛】本题考查了矩形的性质,图形的变换-平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.16、x>-1;【解析】

根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】一次函数和的图象交于点,不等式的解集是.故答案为:.【点睛】此题考查了一次函数与一元一次不等式的应用,主要考查了学生的观察能力和理解能力,题型较好,难度不大.17、【解析】

由C′D∥BC,可得比例式,设AB=a,构造方程即可.【详解】设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,∵C′D∥BC,∴,即,解得a=−1−(舍去)或−1+.所以AB长为.故答案为.【点睛】本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.18、6cm【解析】

根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.【详解】解::如图,D,E,F分别是△ABC的三边的中点,

则DE=AC,DF=BC,EF=AB.

∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.【点睛】本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.三、解答题(共78分)19、21【解析】

设每次倒出药液为x升,第一次倒出后剩下的纯药液为63(1-),第二次加满水再倒出x升溶液,剩下的纯药液为63(1-)(1-)又知道剩下的纯药液为28升,列方程即可求出x.【详解】设每次倒出液体x升,63(1-)2=28,x1=105(舍),x2=21.答:每次倒出液体21升.【点睛】本题考查了一元二次方程的应用,根据题目给出的条件,找出合适的等量关系是解题的关键.20、【解析】

根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC的长.【详解】解:由折叠可得,△EOC≌△EBC,∴CB=CO,∵四边形ABED是菱形,∴AO=CO.∵四边形ABCD是矩形,∴∠B=90°,设BC=x,则AC=2x,∵在Rt△ABC中,AC2=BC2+AB2,∴(2x)2=x2+32,解得x=,即BC=.【点睛】根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.21、(1);(2);(3)0【解析】

(1)根据“倍根方程”和根与系数之间的关系可直接求解.(2)根据题目信息和根与系数的关系找出m,n之间的关系,再对代数式求解.(3)根据倍根方程的定义找出m,n之间的关系,进行分类讨论即可求解.【详解】(1)∵一元二次方程是“倍根方程”∴令2x1=x2,有x1+x2=3,x1x2=c∴c=2(2)设x=m,x=2m是方程的解∴2m+m=-,2m2=消去m解得2b2=9ac所以,,之间的关系为(3)∵是“倍根方程”∴方程的两个根分别为x=2和x=,∴=4或=1,即n=4m或n=m当n=4m时,原式为(m-n)(4m-n)=0,当n=m时,原式为(m-n)(4m-n)=0,∴代数式=0【点睛】本题属于阅读题型,需要有一定的理解和运用能力,关键是要理清题目的条件,运用所学知识求解.22、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】

(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.23、(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【解析】

(1)由于一次函数y=2x+4的图象与x、y轴分别交于点A、B,所以利用函数解析式即可求出A、B两点的坐标,然后作DF⊥x轴于点F,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AFD=90º,AB=AD,接着证明△BAO≌△ADF,最后利用全等三角形的性质可以得到DF=AO=2,AF=BO=4,从而求出点D的坐标;(2)过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,用求点D的方法求得点C的坐标为(4,2),得出OC=2,由A、B的坐标得到AB=2,从而OC=AB=AD,根据△ADE与△COM全等,利用全等三角形的性质可知OM=AE,即OA=EM=2,利用C、D的坐标求出直线CD的解析式,得出点E的坐标,根据EM=2,即可求出点M的坐标.【详解】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).故答案为(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质,全等三角形的判定与性质.24、(1)证明见解析;(2)证明见解析.【解析】

(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.又∵AC是折痕,∴BC=CE=AD,AB=AE=CD.又∵DE=ED,∴ΔADE≌ΔCED(SSS);(2)∵ΔADE≌ΔCED,∴∠EDC=∠DEA,又∵ΔACE与ΔACB关于AC所在直线对称,∴∠OAC=∠CAB.又∵∠OCA=∠CAB,∴∠OAC=∠OCA.∵∠DOE=∠COA,∴∠OAC=∠DEA,∴DE∥AC.考点:1.折叠问题;2.矩形的性质;3.折叠对称的性质;4.全等三角形的判定和性质;5.平行的判定.25、(1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).【解析】

(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.【详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,∴S△ABC=AC•BC=×2×1=1.故答案为1;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=﹣x+;(3)当k>2时,y=kx+2过A(1,3)时,3=k+2,解得k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论