版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省潮州市名校2024年八年级下册数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.使式子有意义的x的值是()A.x≥1 B.x≤1 C.x≥﹣1 D.x≤22.一次函数y=kx+b(k<0,b>0)的图象可能是(
)A.
B.
C.
D.3.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A.1个 B.2个 C.3个 D.4个4.﹣2018的倒数是()A.2018 B. C.﹣2018 D.5.若a+|a|=0,则等于()A.2﹣2a B.2a﹣2 C.﹣2 D.26.若分式有意义,则的取值范围是()A. B. C. D.7.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm8.点P(-2,3)到x轴的距离是()A.2 B.3 C. D.59.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠310.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行500米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为x小明、x小刚,方差依次为S2小明、A.x小明=C.x小明>11.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF
的面积为其中一定成立的有()个.A.1 B.2 C.3 D.412.下列命题中,假命题的是()A.四个角都相等的四边形是矩形B.两组对边分别相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是正方形D.两条对角线互相垂直平分的四边形是菱形二、填空题(每题4分,共24分)13.如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.14.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.15.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).16.一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.17.如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.18.如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.三、解答题(共78分)19.(8分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.20.(8分)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.请回答:
(1)①图1中△ABC的面积为________;②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.21.(8分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.22.(10分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.(1)求正比例函数和一次函数的表达式;(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;(3)求出的面积.23.(10分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?24.(10分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?25.(12分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.26.为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?
参考答案一、选择题(每题4分,共48分)1、A【解析】
根式有意义则根号里面大于等于0,由此可得出答案.【详解】解:由题意得:x﹣1≥0,∴x≥1.故选A.【点睛】本题考查二次根式有意义的条件,比较简单,注意根号里面的式子为非负数.2、C【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3、D【解析】
分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。故选:D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.4、D【解析】
根据倒数的概念解答即可.【详解】﹣2018的倒数是:﹣.故选D.【点睛】本题考查了倒数的知识点,解题的关键是掌握互为倒数的两个数的乘积为1.5、A【解析】
直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.6、A【解析】
根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【点睛】此题考查分式有意义的条件,正确理解条件是解题的关键.7、A【解析】
由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【详解】根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠EDA,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=1.故选:A.【点睛】本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.8、B【解析】
直接利用点的坐标性质得出答案.【详解】点P(-2,1)到x轴的距离是:1.故选B.【点睛】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.9、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.10、B【解析】
根据平均数和方差的定义分别计算可得.【详解】解:x小明=58+53+53+51+605x小刚=54+53+56+55+575则S2小明=15×[(58-55)2+2×(53-55)2+(51-55)2+(60-55)S2小刚=15×[(54-55)2+(53-55)2+(56-55)2+(55-55)2+(57-55)故选:B.【点睛】本题主要考查了方差的计算,熟记方差的计算公式是解决此题的关键.11、C【解析】
根据菱形的性质,逐个证明即可.【详解】①四边形ABCD为菱形AB=BC∠DAB=60°△ABF≌△CBF因此①正确.②过E作EM垂直于AB的延长线于点MCE=2BE=4∠DAB=60°因此点E到AB的距高为故②正确.③根据①证明可得△ABF≌△CBFAF=CF故③正确.④和的高相等所以△ABF≌△CBF故④错误.故有3个正确,选C.【点睛】本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.12、C【解析】
根据矩形、平行四边形、正方形、菱形的判定方法依次分析各选项即可作出判断.【详解】A.四个角都相等的四边形是矩形,是真命题,故不符合题意;B.两组对边分别相等的四边形是平行四边形,是真命题,故不符合题意;C.如图,四边形ABCD的对角线AC=BD且AC⊥BD,但不是正方形,故C选项是假命题,故符合题意;对角线互相垂直且相等的四边形不一定是正方形,是正方形D.两条对角线互相垂直平分的四边形是菱形,是真命题,故不符合题意,故选C.【点睛】本题考查了矩形、平行四边形、菱形、正方形的判定,熟练掌握各图形的判定方法是解题的关键.二、填空题(每题4分,共24分)13、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-214、(2,4),(8,4),(7,4),(7.5,4)【解析】
分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标【详解】当PD=DA
如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,
∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),
∴AD=PD=5,PE=P'F=4
∴根据勾股定理得:DE=DF=∴P(2,4),P'(8,4)
若AD=AP=5,同理可得:P(7,4)
若PD=PA,则P在AD的垂直平分线上,
∴P(7.5,4)
故答案为:(2,4),(8,4),(7,4),(7.5,4)【点睛】本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.15、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.16、13.5【解析】
从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度,根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答【详解】从图形可以看出进水管的速度为:60÷6=10(升/分),出水管的速度为:10-(90-60)÷(15-6)=(升/分),关闭进水管后,放水经过的时间为:90÷=13.5(分).【点睛】此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据17、【解析】由图可得,正方形ABCD的面积=,正方形ABCD的面积=,∴.故答案为:.18、【解析】
连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.【详解】解:连接,取的中点,连,,则,,,∵,为中点∴,∵BD平分,∴BE=EG设,则,∴在中,,解得(舍),∴,,∴.【点睛】本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.三、解答题(共78分)19、2000【解析】
设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.【详解】解:设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得解得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.【点睛】本题考查了分式方程的应用,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验.20、(1)①,②见解析;(2)见解析.【解析】分析:(1)①如图3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF结合已知条件即可求得△ABC的面积了;②如图4,对照图形过点O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,则根据过直线为一点有且只有一条直线平行于已知直线可知点O、M、N在同一直线上,由此所得线段MN=2AB;(2)如图5,按照题中构图法结合勾股定理画出△DEF即可.详解:(1)①如图3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=;②如图所示,线段MN即为所求:(2)如图5所示,△DEF即为所求.点睛:(1)“构造如图3所示的正方形DECF,由此得到,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF”是解答第1小题的关键;(2“由勾股定理在6×6网格中找到使DE=,EF=,DF=的点D、E、F的位置”是解答第2小题的关键.21、y=x+【解析】试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,∴k=∴y与x的函数关系式为.考点:待定系数法求一次函数解析式.22、(1);;(2)图详见解析;(3)3【解析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;(2)根据题意描出相应的点,再连线即可;(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.【详解】解:(1)把A(1,2)代入中,得,∴正比例函数的表达式为;把A(1,2),B(3,0)代入中,得,解得:,所以一次函数的表达式为;(2)如图所示.(3)由题意可得:.【点睛】本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.23、(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.【解析】
根据两种图书的倍数关系,设乙图书每本的价格为x元,则甲图书每本的价格为2.5x元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.设购买甲图书m本,则购买乙图书(2m+8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.【详解】解:(1)设乙图书每本价格为元,则甲图书每本价格是元,根据题意可得:,解得:,经检验得:是原方程的根,则,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为,则购买乙图书的本数为:,故,解得:,故,答:该图书馆最多可以购买28本乙图书.【点睛】本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.24、(1)8元;(2)1元.【解析】
(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批手机壳进货单价为x元,
根据题意得:3•=,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批手机壳的进货单价是8元;
(2)设销售单价为m元,
根据题意得:200(m-8)+600(m-10)≥2000,
解得:m≥1.
答:销售单价至少为1元.【点睛】本题考查分式方程的应用以及一元一次不等式的应用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学每日一练试卷A卷含答案
- 二年级数学计算题专项练习
- 地质灾害治理施工组织设计方案
- 2024年新型防腐木建设协议范本
- 2024年委托管理权限规范协议细则
- 2024年新轿车租赁协议规范
- 2024年食品配送服务协议细则
- 2024年度品牌宣传合作协议
- 观察循证护理在ICU脑卒中患者床旁盲插螺旋形鼻肠管中的应用
- 多人股权转让协议样本:修订
- 扩张型心肌病诊断和治疗指南
- 电子小报社团教案
- 八大特殊作业安全试题题库
- 标签打印管理办法及流程
- 五四制青岛版2022-2023五年级科学上册第五单元第19课《生物的栖息地》课件(定稿)
- DB65∕T 3253-2020 建筑消防设施质量检测评定规程
- 四年级上册美术教案15《有创意的书》人教版
- 否定词否定句课件(PPT 38页)
- 水力学第12章 相似理论-2015
- 第7章国际资本流动与国际金融危机
- 藏传佛教英文词汇
评论
0/150
提交评论