




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
武威市重点中学2024届数学八年级下册期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为().A.15 B. C.12 D.182.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离和放学后的时间之间的关系如图所示,给出下列结论:①小刚家离学校的距离是;②小刚跑步阶段的速度为;③小刚回到家时已放学10分钟;④小刚从学校回到家的平均速度是.其中正确的个数是()A.4 B.3 C.2 D.13.若关于x的分式方程=1的解为正数,则m的取值范围是()A.m>3 B.m≠-2 C.m>-3且m≠1 D.m>-3且m≠-24.如果,那么yx的算术平方根是()A.2 B.1 C.-1 D.±15.如图,二次函数的图象与轴交于两点,与轴交于点,则下列说法错误的是()A. B.C.当时, D.当时,随的增大而减小6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元7.下列说法中正确的是()A.在中,.B.在中,.C.在中,,.D.、、是的三边,若,则是直角三角形.8.如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是()A. B. C. D.50°9.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.310.某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小 B.平均数变大,方差变大C.平均数变大,方差不变 D.平均数变大,方差变小11.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连结CC′.则四边形AB′C′C的周长是()A.18cm B.20cm C.22cm D.24cm12.如图,过正五边形的顶点作直线,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.函数y=的自变量x的取值范围为____________.14.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.15.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.16.某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.17.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.18.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.三、解答题(共78分)19.(8分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.(1)若,求的度数:(2)设.①请用含的代数式表示与的长;②与的长能同时是方程的根吗?说明理由.20.(8分)如图,将△ABC绕点A顺时针旋转得到△ADE(点B,C的对应点分别是D,E),当点E在BC边上时,连接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.21.(8分)如图,在ΔABC中,AB=BC,∠A=2α,点D是BC边的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=________(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°-2α,与AC边交于点N.根据条件补全图形,并写出DM与DN22.(10分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.23.(10分)的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.24.(10分)如图,在中,点是的中点,连接并延长,交的延长线于点F.求证:.25.(12分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是________;(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.26.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:(1)体育场离张强家的多远?张强从家到体育场用了多长时间?(2)体育场离文具店多远?(3)张强在文具店逗留了多久?(4)计算张强从文具店回家的平均速度.
参考答案一、选择题(每题4分,共48分)1、A【解析】
过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】解:沿过A的圆柱的高剪开,得到矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,
∵AE=A′E,A′P=AP,
∴AP+PC=A′P+PC=A′C,
∵CQ=×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,
在Rt△A′QC中,由勾股定理得:A′C==15cm,
故答案为A.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,关键是找出最短路线.2、A【解析】
由t=0时s=1000的实际意义可判断①;由8≤t≤10所对应的图象表示小刚跑步阶段,根据速度=路程÷时间可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【详解】解:①当t=0时,s=1000,即小刚家离学校的距离是1000m,故①正确;②小刚跑步阶段的速度是=300(m/min),故②正确;
③当s=0时,t=10,即小刚回到家时已放学10min,故③正确;
④小刚从学校回到家的平均速度是=100(m/min),故④正确;
故选:A.【点睛】本题考查利用函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.3、D【解析】
先解分式方程,然后根据分式方程的解得情况和方程的增根列出不等式,即可得出结论.【详解】解:去分母得,m+1=x-1,解得,x=m+3,∵方程的解是正数,∴m+3>0,解这个不等式得,m>-3,∵m+3-1≠0,∴m≠-1,则m的取值范围是m>-3且m≠-1.故选:D.【点睛】此题考查的是根据分式方程解的情况,求参数的取值范围,掌握分式方程的解法和分式方程的增根是解决此题的关键.4、B【解析】
根据二次根式的性质,先求出x和y的值,然后代入计算即可.【详解】解:∵,∴,,∴且,∴,∴,∴,∵,∴的算术平方根为1;故选:B.【点睛】本题考查了二次根式的性质,二次根式的化简,以及算术平方根的定义,解题的关键是熟练掌握二次根式的性质,正确求出x、y的值.5、D【解析】
令y=0,求出A,B的坐标,令x=0,求出C点坐标,再根据直角坐标系与二次函数的性质即可求解.【详解】令y=0,得x1=-1,x2=3,∴A(-1,0),B(3,0)∴AB=4,A正确;令x=0,得y=-3,∴C(0,-3)∴OC=BO,,B正确;由图像可知当时,,故C正确,故选D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据图像求出与坐标轴的交点坐标.6、A【解析】
众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.7、D【解析】
根据勾股定理以及勾股定理的逆定理逐项分析即可.【详解】A.因为不一定是直角三角形,故不正确;B.没说明哪个角是直角,故不正确;C.在中,,则,故不正确;D.符合勾股定理的逆定理,故正确.故选D.【点睛】本题考查了勾股定理,以及勾股定理逆定理,熟练掌握定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.8、A【解析】
根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.【详解】∵,∴,∵点D在AC的垂直平分线上,∴AD=CD,∴,∴.故选A.【点睛】本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.9、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.10、D【解析】
根据平均数、中位数的意义、方差的意义,可得答案.【详解】解:原数据的平均数为×(160+165+175+163+172)=166(cm),方差为×[(160-166)2+(165-166)2+(170-166)2+(163-166)2+(172-166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165-167)2+(170-167)2+(163-167)2+(172-167)2]=11.6(cm2),所以平均数变大,方差变小,故选D.【点睛】本题考查了方差,利用平均数、中位数和方差的定义是解题关键11、D【解析】
根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【详解】解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.【点睛】本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.12、A【解析】
由两直线平行,内错角相等及正五边形内角的度数即可求解.【详解】解:由正五边形ABCDE可得,又故答案为:A【点睛】本题主要考查了正多边形的内角及平行线的性质,掌握正多边形内角的求法是解题的关键.正n边形每个内角的度数为.二、填空题(每题4分,共24分)13、x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.14、1【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.15、57.5【解析】
根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.16、78【解析】
直接利用加权平均数的求法进而得出答案.【详解】由题意可得:70×50%+90×30%+80×20%=78(分).故答案为:78【点睛】此题考查加权平均数,解题关键在于掌握运算法则17、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.18、1.【解析】
由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.【详解】在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∵AB=6,AD=4,∴,则CD=AC﹣AD=9﹣4=1.【点睛】考点:相似三角形的判定与性质.三、解答题(共78分)19、(1);(2)①,;②是,理由见解析【解析】
(1)根据直角三角形、等腰三角形的性质,判断出△DBC是等边三角形,即可得到结论;(2)①根据线段的和差即可得到结论;②根据方程的解得定义,判断AD是方程的解,则当AD=BE时,同时是方程的解,即可得到结论.【详解】解:(1)∵,,又,是等边三角形..(2)①∵又,.②∵∴线段的长是方程的一个根.若与的长同时是方程的根,则,即,,,∴当时,与的长同时是方程的根.【点睛】本题考查了勾股定理,一元二次方程的解;熟练掌握直角三角形和等腰三角形的性质求边与角的方法,掌握判断一元二次方程的解得方法是解题的关键.20、∠EAC=100°.【解析】
由旋转可得,△ABC≌△ADE,进而得出∠ABC=∠ADE=30°,AD=AB,进而得到∠ADB=40°=∠ABD,∠BAD=100°,再根据∠BAC=∠DAE,即可得到∠EAC=∠DAB=100°.【详解】由旋转可得,△ABC≌△ADE,∴∠ABC=∠ADE=30°,AD=AB,∵∠BDE=10°,∴∠ADB=40°=∠ABD,∴∠BAD=100°,又∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠EAC=∠DAB=100°.【点睛】本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.21、(1)α;(2)DM=DN,理由见解析【解析】
(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°-α,然后利用互余可得到∠EDB=α;(2)①如图,利用∠EDF=180°-2α画图;②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°-2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;【详解】解:(1)∵AB=AC,
∴∠B=∠C=12(180°-∠A)=90°-α,
而DE⊥AB,
∴∠DEB=90°,
∴∠EDB=90°-∠B=90°-(90°-α)=α;
故答案为:α(2)①补全图形如图所示.②结论:DM=DN.理由;在四边形AEDF中,∠A=2α,DE⊥AB于点E,DF⊥AC于点F,∴∠EDF=360连接AD,∵点D是BC边的中点,AB=AC,∴DE=DF,又∵射线DM绕点D顺时针旋转180°-2a与AC边交于点∴∠MDN=180∵∠EDM+∠MDF=∠FDN+∠MDF=180∴∠EDM=∠FDN,∴ΔDEM≅ΔDFN,∴DM=DN.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是利用数形结合区找出边和角的关系,然后解决问题.22、(1);(2)【解析】
(1)设直线AB解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出直线AB所对应的函数解析式;(2)把点P(a,-2)代入吧(1)求得的解析式即可求得a的值.【详解】解:(1)设直线所对应的函数表达式为.直线经过、两点,解得直线所对应的函数表达式为.(2)点在直线上,..【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于把已知值代入解析式.23、证明见解析.【解析】分析:连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.详解:证明:连接DE,FG,,CE是的中位线,,E是AB,AC的中点,,,同理:,,,,四边形DEFG是平行四边形,,.
点睛:此题考查了三角形中位线定理,以及平行线的判定,熟练掌握中位线定理是解本题的关键.24、,证明略.【解析】
证明:四边形是平行四边形,..又,...25、(1)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)证明见解析.【解析】
(1)直接得出它的逆命题;(2)先判断出∠A=∠ACD,∠B=∠DCB,最后用三角形的内角和定理,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权转让协议(海景酒店)
- 2025广东职工劳务合同
- 商品房认购合同
- 2025年门面租赁合同模板
- 护士辞职申请协议书
- 个人提成协议书范本
- 大庆医学高等专科学校《专业导学(物流管理)》2023-2024学年第一学期期末试卷
- 河南省郑州市登封市重点中学2025年初三第二次(4月)调研考试化学试题试卷含解析
- 河南林业职业学院《结构力学2》2023-2024学年第二学期期末试卷
- 四川文理学院《生物制药工程原理和技术》2023-2024学年第二学期期末试卷
- 妇女营养保健培训
- 时间序列的平稳性测试题及答案
- 2025-2030中国数据要素市场发展前景及趋势预测分析研究报告
- 中外航海文化知到课后答案智慧树章节测试答案2025年春中国人民解放军海军大连舰艇学院
- 2025年华润燃气投资中国有限公司招聘笔试参考题库含答案解析
- 2022年《跟徐老师学汉语》新HSK六级词汇词
- 妊娠剧吐诊断以及临床处理专家共识
- [PPT]桥梁工程桩基施工超全解析(41页 配图丰富)_ppt
- 叉车定期检验研究分析报告
- 光缆和管道的施工规范标准
- MDK5软件入门
评论
0/150
提交评论