2024届安徽省亳州市黉高级中学八年级数学第二学期期末经典试题含解析_第1页
2024届安徽省亳州市黉高级中学八年级数学第二学期期末经典试题含解析_第2页
2024届安徽省亳州市黉高级中学八年级数学第二学期期末经典试题含解析_第3页
2024届安徽省亳州市黉高级中学八年级数学第二学期期末经典试题含解析_第4页
2024届安徽省亳州市黉高级中学八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省亳州市黉高级中学八年级数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在下述命题中,真命题有()(1)对角线互相垂直的四边形是菱形;(2)三个角的度数之比为的三角形是直角三角形;(3)对角互补的平行四边形是矩形;(4)三边之比为的三角形是直角三角形..A.个 B.个 C.个 D.个2.下列图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.3.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A. B. C. D.4.已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形5.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,2.5) B.(1,1+) C.(1,3) D.(﹣1,1+)6.下列函数中,图像不经过第二象限的是()A. B. C. D.7.使式子有意义的x的取值范围是().A.x≤1 B.x≤1且x≠﹣2C.x≠﹣2 D.x<1且x≠﹣28.如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为()A. B. C. D.9.七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,则有()A.c>b>a B.b>c>a C.c>a>b D.a>b>c10.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF11.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.10 B.9 C.8 D.612.下列三角形纸片,能沿直线剪一刀得到直角梯形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.14.一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么__________(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试9095面试858016.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.17.将直线平移后经过点(5,),则平移后的直线解析式为______________.18.如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.三、解答题(共78分)19.(8分)某中学积极开展跳绳锻炼,一次体育測试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和頻数分布直方图,如图:次数频数4181381(1)补全频数分布表和频数分布直方图;(2)表中组距是次,组数是组;(3)跳绳次数在范围的学生有人,全班共有人;(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?20.(8分)如图,在平面直角坐标系中,已知直线,都经过点,它们分别与轴交于点和点,点、均在轴的正半轴上,点在点的上方.(1)如果,求直线的表达式;(2)在(1)的条件下,如果的面积为3,求直线的表达式.21.(8分)为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)户外活动时间的众数和中位数分别是多少?(4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?22.(10分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.23.(10分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:输入汉字(个)132133134135136137甲组人数(人)101521乙组人数(人)014122(1)请你填写下表中甲班同学的相关数据.组众数中位数平均数()方差()甲组乙组134134.51351.8(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).24.(10分)小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了次实验,实验的结果如下:朝上的点数出现的次数(1)计算“点朝上”的频率和“点朝上”的频率.(2)小颖说:“根据实验得出,出现点朝上的机会最大”;小红说:“如果投掷次,那么出现点朝上的次数正好是次.”小颖和小红的说法正确吗?为什么?25.(12分)如图,正方形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是正方形.26.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(1)如图(1),求证:AM1+MF1=AF1.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据矩形、菱形、直角三角形的判定定理对四个选项逐一分析.【详解】解:(1)对角线平分且互相垂直的四边形是菱形,故错误;(2)180°÷8×4=90°,故正确;(3)∵平行四边形的对角相等,又互补,∴每一个角为90°∴这个平行四边形是矩形,故正确;(4)设三边分别为x,x:2x,∵∴由勾股定理的逆定理得,这个三角形是直角三角形,故正确;∴真命题有3个,故选:C.【点睛】本题考查的知识点:矩形、菱形、直角三角形的判定,解题的关键是熟练掌握这几个图形的判定定理.2、C【解析】A.不是轴对称图形,不是中心对称图形,不符合题意;B.是轴对称图形,不是中心对称图形,不符合题意;C.不是轴对称图形,是中心对称图形,符合题意;D.是轴对称图形,是中心对称图形,不符合题意.故选C.3、B【解析】如图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,∠NEK=∠MEL,EN=EM,∠ENK=∠EML,∴△ENK≌△ENL(ASA).∴阴影部分的面积始终等于正方形面积的,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.4、A【解析】

根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.【详解】解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,所以a﹣b=0或b﹣c=0,得到a=b或b=c,所以三角形为等腰三角形,故选:A.【点睛】本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.5、C【解析】

过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选:C.【点睛】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.6、B【解析】

根据一次函数的性质,逐个进行判断,即可得出结论.【详解】各选项分析得:A.k=3>0,b=5>0,图象经过第一、二、三象限;B.k=3>0,b=−5<0,图象经过第一、三、四象限;C.k=−3<0,b=5>0,图象经过第一、二、四象限;D.k=−3<0,b=−5<0,图象经过第二、三、四象限.故选B.【点睛】此题考查一次函数的性质,解题关键在于掌握一次函数的性质.7、B【解析】

根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,1﹣x≥0且1+x≠0,解得x≤1且x≠﹣1.故选B.考点:二次根式有意义的条件;分式有意义的条件.8、C【解析】

利用黄金比进行计算即可.【详解】解:由得,

AC=AB=×2=-1,BC=AB=×2=3-,

因为四边形CBDE为正方形,所以EC=BC,

AE=AC-CE=AC-BC=(-1)-(3-)=2-4,

矩形AEDF的面积:AE•DE=(2-4)×(3-)=10-1.

故选C.【点睛】本题考查黄金分割的意义,熟练利用黄金比计算是解题的关键.9、D【解析】

根据将所有数据加在一起除以数据的个数就能得到该组数据的平均数;排序后找到中间两数的平均数即为该组数据的中位数;观察后找到出现次数最多的数即为该组数据的众数,即可求出答案.【详解】该组数据的平均数为:a=(150+140+100+110+130+110+120)÷7=122.86,

将该组数据排序为:100,110,110,120,130,140,150,

该组数据的中位数为:b=120;

该组数据中数字110出现了2次,最多,

该组数据的众数为:c=110;

则a>b>c;

故选D.【点睛】本题考查众数、算术平均数和中位数,解题的关键是掌握众数、算术平均数和中位数的求解方法.10、A【解析】

平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF

∴Rt△ABC≌Rt△DEF

∴BC=EF,AC=DF

所以只有选项A是错误的,故选A.【点睛】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.11、B【解析】

作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.【详解】作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=3,∴△BCE的面积=×BC×EF=9,故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.12、C【解析】

本题就是应用直角梯形的这个性质作答的,直角梯形:有一个角是直角的梯形叫直角梯形.由梯形的定义得到直角梯形必有两个直角.【详解】直角梯形应该有两个角为直角,C中图形已经有一直角,再沿一直角边剪另一直角边的平行线即可.如图:故选:C.【点睛】此题是考查了直角梯形的性质与三角形的内角和定理的应用,掌握直角梯形的性质是解本题的关键.二、填空题(每题4分,共24分)13、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.14、2.5【解析】

先用待定系数法求出直线解析式,再将点A代入求解可得.【详解】解:将(-2,0)、(0,1)代入y=kx+b,得:,解得:∴y=x+1,将点A(3,m)代入,得:即故答案为:2.5【点睛】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.15、李老师.【解析】

利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【详解】解:李老师总成绩为:90×+85×=87,

王老师的成绩为:95×+80×=86,

∵87>86,

∴李老师成绩较好,

故答案为:李老师.【点睛】考查加权平均数的计算方法,以及利用加权平均数对事件作出判断,理解权对平均数的影响.16、甲【解析】

根据方差的定义,方差越小数据越稳定.【详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、y=2x-1【解析】

根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=2x+b.

把(5,1)代入直线解析式得1=2×5+b,

解得

b=-1.

所以平移后直线的解析式为y=2x-1.

故答案为:y=2x-1.【点睛】本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.18、(3,0)【解析】

连接AA′,BB′,分别作AA′,BB′的垂直平分线,两垂直平分线的交点即是旋转中心,然后写出坐标即可.【详解】连接旋转前后的对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线相交的地方就是旋转中心.所以,旋转中心D的坐标为(3,0).故答案为:(3,0).【点睛】本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.三、解答题(共78分)19、(1)见解析,(2)表中组距是20次,组数是7组;(3)31人,50人;(4)26%【解析】

(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;(2)利用频数分布表和频数分布直方图求解;(3)把和的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【详解】解:(1)如图,成绩在的人数为2人,成绩在的人数为4人,(2)观察图表即可得:表中组距是20次,组数是7组;(3)∵的人数为18人,的人数为13人,∴跳绳次数在范围的学生有18+13=31(人),全班人数为(人)(4)跳绳次数不低于140次的人数为,所以全班同学跳绳的优秀率.【点睛】本题考查了频(数)率分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1);(2).【解析】

(1)先根据A点坐标求出OA的长度,然后根据求出OB的长度,进而得到B点的坐标,最后利用待定系数法即可求出直线的表达式;(2)首先利用的面积求出点C的坐标,然后利用待定系数法即可求出直线的表达式.【详解】(1),.,点在轴正半轴,.设的函数解析式为,把,代入得解得:,.(2),,∵,.设,则,点在点上方,,.设的函数解析式为,把,代入得,解得:,.【点睛】本题主要考查一次函数,掌握待定系数法及数形结合是解题的关键.21、(1)50;(2)12;(3)中数是1小时,中位数是1小时;(4)16000人.【解析】试题分析:(1)根据户外活动时间是0.5小时的有10人,所占的百分比是20%,据此即可求得调查的总人数;(2)用总人数乘以对应的百分比即可求得人数,从而补全直方图;(3)根据众数、中位数的定义即可求解;(4)利用总人数乘以对应的比分比即可求解.试题解析:(1)调查的总人数是10÷20%=50(人);(2)户外活动时间是1.5小时的人数是50×24%=12(人),;(3)中数是1小时,中位数是1小时;(4)学生户外活动的平均时间符合要求的人数是20000×(1-20%)=16000(人).答:大约有16000学生户外活动的平均时间符合要求.考点:1.频数(率)分布直方图;2.扇形统计图;3.加权平均数;4.中位数;5.众数.22、答案见详解.【解析】

根据勾股定理计算出、、,再根据勾股定理逆定理可得是直角三角形.【详解】证明:,,,,是直角三角形.【点睛】此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长,,满足,那么这个三角形就是直角三角形.23、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).【解析】

(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.【详解】解:(1)如下表:组众数中位数平均数()方差()甲组1351351351.6乙组134134.51351.8(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人∴乙组成绩更好一些(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).【点睛】此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.24、(1);;(2)两人的说法都是错误的,见解析.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论