天津市和平区名校2024年八年级数学第二学期期末统考模拟试题含解析_第1页
天津市和平区名校2024年八年级数学第二学期期末统考模拟试题含解析_第2页
天津市和平区名校2024年八年级数学第二学期期末统考模拟试题含解析_第3页
天津市和平区名校2024年八年级数学第二学期期末统考模拟试题含解析_第4页
天津市和平区名校2024年八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市和平区名校2024年八年级数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是()A.6和6 B.8和6 C.6和8 D.8和162.解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=43.计算的结果是()A. B. C. D.4.下列多项式能用完全平方公式分解因式的有()A. B. C. D.5.解关于的方程(其中为常数)产生增根,则常数的值等于()A.-2 B.2 C.-1 D.16.下列从左到右的变形,是因式分解的是A. B.C. D.7.定义新运算“”如下:当时,;当时,,若,则的取值范围是()A.或 B.或C.或 D.或8.直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为()A.x>﹣2 B.x<1 C.x>1 D.x<﹣29.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为()A.k=2 B.k=4 C.k=15 D.k=3610.如图,一次函数的图象交轴于点,则不等式的解集为()A. B. C. D.二、填空题(每小题3分,共24分)11.在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.12.如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.13.(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.14.已知是一个关于的完全平方式,则常数的值为______.15.利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.16.一个正多边形的每个内角度数均为135°,则它的边数为____.17.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.18.为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.三、解答题(共66分)19.(10分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;(1)当点在边上时,①判断与的数量关系;②当时,判断点的位置;(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.20.(6分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF//BC交BE的延长线于F,BF交AC于G,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90∘,试判断四边形(3)求证:CG=2AG.21.(6分)选择合适的点,在如图所示的坐标系中描点画出函数的图象,并指出当为何值时,的值大于1.22.(8分)(1)计算:(2)23.(8分)如图,在▱ABCD中,E、F分别是对角线BD上的两点.且BF=DE,求证:AF=CE.24.(8分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为27825.(10分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。26.(10分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量q(升)与行驶时间t(小时)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶小时后加油,中途加油升;(2)求加油前油箱余油量q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数.【详解】在这一组数据中6是出现次数最多的,故众数是6;这组数据已按从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;故选A.【点睛】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、B【解析】

方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.3、A【解析】

根据合并同类二次根式即可.【详解】解:故答案选:A【点睛】本题考查了二次根式的加减运算,掌握合并同类二次根式是解题的关键.4、C【解析】

根据完全平方公式的形式即可判断.【详解】∵=(x-2)2故选C.【点睛】此题主要考查公式法因式分解,解题的关键是熟知完全平方公式的形式特点.5、C【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到x-5=0,求出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母得:x-6+x-5=m,

由分式方程有增根,得到x-5=0,即x=5,

把x=5代入整式方程得:m=-1,

故选:C.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6、D【解析】

把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7、D【解析】

分3>x+2和3<x+2两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,

解得:x>-2,

∴-2<x<1;

当3<x+2,即x>1时,3(x+2)-(x+2)>0,

解得:x>-2,

∴x>1,

综上,-2<x<1或x>1,

故选:D.【点睛】考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.8、B【解析】

由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b<mx+n解集.【详解】解:观察图象可知,当x<1时,ax+b<mx+n,∴不等式ax+b<mx+n的解集是x<1故选B.【点睛】本题考查了一次函数与一元一次不等式的关系,根据交点得到相应的解集是解决本题的关键.9、B【解析】

根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.10、C【解析】

观察函数图象,找出在x轴上方的函数图象所对应的x的取值,由此即可得出结论.【详解】解:观察函数图象,发现:

当时,一次函数图象在x轴上方,

不等式的解集为.

故选:C.【点睛】本题考查了一次函数与一元一次不等式,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.二、填空题(每小题3分,共24分)11、【解析】

根据反比例函数中,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-3>0,解可得k的取值范围.【详解】根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k−3>0,解得k>3.故答案为:k>3【点睛】此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>012、.【解析】

设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.【详解】解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,如图:∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE,同理可得∠AOD=∠OBE,在△AOD和△OBE中,,∴△AOD△OBE(ASA),∵点B在第四象限,∴,即,解得,∴反比例函数的解析式为:.故答案为.【点睛】本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.13、4或﹣1.【解析】

根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.14、1【解析】

根据完全平方公式的特点即可求解.【详解】∵是一个关于的完全平方式∴=2×2x×解得n=1【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.15、【解析】

的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.【详解】解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示由图像可得故答案为:【点睛】本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.16、8【解析】

试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:=135°解得:n=8故答案为8.【点睛】考点:多边形的内角和17、【解析】

由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【点睛】此题考查概率公式,掌握运算法则是解题关键18、173.1.【解析】

根据加权平均数的定义求解可得.【详解】解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)=(116+346+348+121)÷10=1731÷10=173.1(cm)答:该篮球队队员平均身高是173.1cm.故答案为:173.1.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.三、解答题(共66分)19、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)【解析】

(1)①过点作于点,于点,通过证可得ME=MF;②点位于正方形两条对角线的交点处时,,可得;(2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。【详解】解:(1)。理由是:过点作于点,于点在正方形中,矩形为正方形又②点位于正方形两条对角线的交点处(或中点处)如图,是的中位线,又,此时,是中点,且,,(2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小,AM=AC=;当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大,AM=。故答案为:【点睛】本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。20、(1)详见解析;(2)四边形ADCF是菱形,理由详见解析;(3)详见解析【解析】

(1)由“AAS”可证△AEF≌△DEB;(2)由全等三角形的性质可得AF=BD=CD,可证四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,可证四边形ADCF是菱形;(3)通过证明△AFG∽△CBG,可得AFBC【详解】证明:(1)∵AF//BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∠AFE=∠DBE∴△AEF≌△DEB(AAS);(2)解:四边形ADCF是菱形,理由如下:∵△AEF≌△DEB,∴AF=BD,∵BD=DC,∴AF=DC=12BC∴四边形ADCF是平行四边形,∵∠BAC=90∘,AD是∴AD=DC,∴四边形ADCF是菱形;(3)∵AF//BC∴△AFG∽△CBG∴∴∴GC=2AG【点睛】本题考查四边形综合题,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.21、图象见详解;时,.【解析】

任意选取两个的值,代入后求得对应值,在网格上对应标出,连接,可得所需直线,根据已画图象可得时,的取值范围.【详解】在函数中,当时,,当时,,描点,画图如下:由图可知,时,.【点睛】本题考查了一次函数图象的画法,及根据图象求符合条件的的取值范围的问题,熟练掌握相关技巧是解题的关键.22、(1)3;(2)1.【解析】

(1)先进行二次根式的除法运算,然后把二次根式化为最简二次根式后合并即可;(2)利用平方差公式计算.【详解】(1)原式=3-2+=+2=3;(2)原式=49-48=1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、证明见解析.【解析】

连接AC交BD于点O,连接AE,CF,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,然后求出OE=OF,再根据对角线互相平分的四边形是平行四边形即可证明.【详解】证明:如图,连接AC交BD于点O,

在▱ABCD中,OA=OC,OB=OD,

∵BF=DE,

∴BF-OB=DE-OD,

即OE=OF,

∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);

∴AF=CE.【点睛】此题主要考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.24、(1)k=34;(2)△OPA的面积S=94x+18(﹣8<x<0);(3)点P坐标为(-132,98)或(-19【解析】

(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.(3)分点P在x轴上方与下方两种情况分别求解即可得.【详解】(1)∵直线y=kx+6过点E(﹣8,0),∴0=﹣8k+6,k=34(2)∵点A的坐标为(﹣6,0),∴OA=6,∵点P(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论