浙江省金华市兰溪市2024年八年级下册数学期末质量检测模拟试题含解析_第1页
浙江省金华市兰溪市2024年八年级下册数学期末质量检测模拟试题含解析_第2页
浙江省金华市兰溪市2024年八年级下册数学期末质量检测模拟试题含解析_第3页
浙江省金华市兰溪市2024年八年级下册数学期末质量检测模拟试题含解析_第4页
浙江省金华市兰溪市2024年八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市兰溪市2024年八年级下册数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的()A.中位数 B.众数 C.加权平均数 D.方差2.矩形的面积为,一边长为,则另一边长为()A. B. C. D.3.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.邻边互相垂直4.计算(2+)(﹣2)的结果是()A.1 B.0 C.﹣1 D.﹣75.化简(﹣)2的结果是()A.±3 B.﹣3 C.3 D.96.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53° B.37° C.47° D.123°7.如图,在四边形中,,且,,给出以下判断:①四边形是菱形;②四边形的面积;③顺次连接四边形的四边中点得到的四边形是正方形;④将沿直线对折,点落在点处,连接并延长交于点,当时,点到直线的距离为;其中真确的是()A.①③ B.①④ C.②③ D.②④8.函数中自变量x的取值范围是()A.≥-3 B.≥-3且 C. D.且9.某射击运动员在一次射击训练中,共射击了次,所得成绩(单位:环)为、、、、、,这组数据的中位数为()A. B. C. D.10.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()A.22 B.20C.22或20 D.18二、填空题(每小题3分,共24分)11.如图,正方形CDEF内接于,,,则正方形的面积是________.12.已知点A在反比例函数y=(k≠0)的图象上,过点A作AM⊥x轴于点M,△AMO的面积为3,则k=_____.13.如图,在平面直角坐标系xOy中,一次函数y1=ax+b与反比例函数y2=mx的图象交于点A(-2,1),B(1,-2).14.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.15.计算:_____________.16.在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.17.数据5,5,6,6,6,7,7的众数为_____18.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.(1)求直线的解析式;(2)求点的坐标;(3)求与的解析式,并直接写出自变量的取值范围.20.(6分)某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)抽样的人数是________人,补全频数分布直方图,扇形中________;(2)本次调查数据的中位数落在________组;(3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?21.(6分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?22.(8分)在平面直角坐标系中,三个顶点的坐标分别为(–2,1),(–1,4),(–3,2).(1)写出点关于点成中心对称点的坐标;(2)以原点为位似中心,位似比为2:1,在轴的左侧画出C放大后的,并直接写出点的坐标.23.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标是1.(1)求此一次函数的解析式;(2)请直接写出不等式(k-3)x+b>0的解集;(3)设一次函数y=kx+b的图象与y轴交于点M,点N在坐标轴上,当△CMN是直角三角形时,请直接写出所有符合条件的点N的坐标.24.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.25.(10分)小红同学根据学习函数的经验,对新函数的图象和性质进行了如下探究,请帮她把探究过程补充完整.第一步:通过列表、描点、连线作出了函数的图象…-6-5-4-3-1012……-1.5-2-3-66321.5…第二步:在同一直角坐标系中作出函数的图象(1)观察发现:函数的图象与反比例函数的图象都是双曲线,并且形状也相同,只是位置发生了改变.小红还发现,这两个函数图像既是中心对称图形,又是轴对称图形,请你直接写出函数的对称中心的坐标.(2)能力提升:函数的图象可由反比例函数的图象平移得到,请你根据学习函数平移的方法,写出函数的图象可由反比例函数的图象经过怎样平移得到?(3)应用:在所给的平面直角坐标系中画出函数的图像,若点,在函数的图像上,且时,直接写出、的大小关系.26.(10分)为引导学生广泛阅读文学名著,某校在七年级、八年级开展了读书知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(分),并对数据进行整理、描述和分析.下面给出了部分信息.七年级:7497968998746576727899729776997499739874八年级:7688936578948968955089888989779487889291平均数、中位数、众数如表所示:根据以上信息,回答下列问题:(1)______,______,______;(2)该校对读书知识竞赛成绩不少于80分的学生授予“阅读小能手”称号,请你估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有______人;(3)结合以上数据,你认为哪个年级读书知识竞赛的总体成绩较好,说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据中位数、众数,加权平均数和方差的定义逐一判断可得出答案。【详解】解:A.由中位数的定义可知,宁宁成绩与中位数比较可得出他的成绩是否在班级中等偏上,故本选项正确;B.由众数的定义可知,众数反映同一个成绩人数最多的情况,故本选项错误;C.由加权平均数的性质可知,平均数会受极端值的影响,故本选项错误;D.由方差的定义可知,方差反映的是数据的稳定情况,故本选项错误。【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、C【解析】

根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】∵矩形的面积为18,一边长为,∴另一边长为,故选:C.【点睛】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.3、C【解析】试题分析:A.对角线相等是矩形具有的性质,菱形不一定具有;B.对角线互相平分是菱形和矩形共有的性质;C.对角线互相垂直是菱形具有的性质,矩形不一定具有;D.邻边互相垂直是矩形具有的性质,菱形不一定具有.故选C.点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.考点:菱形的性质;矩形的性质.4、C【解析】分析:根据二次根式的乘法法则结合平方差公式进行计算即可.详解:原式=.故选C.点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.5、C【解析】

根据二次根式的性质即可求出答案.【详解】原式=3,故选:C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.6、B【解析】

设CE与AD相交于点F.∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°.∴∠DFC=37°∵四边形ABCD是平行四边形,∴AD∥BC.∴∠BCE=∠DFC=37°.故选B.7、D【解析】

根据可判定①错误;根据AB=AD,BC=CD,可推出AC是线段BD的垂直平分线,可得②正确;现有条件不足以推出中点四边形是正方形,故③错误;连接AF,设点F到直线AB的距离为h,作出图形,求出h的值,可知④正确。可得正确选项。【详解】解:∵在四边形ABCD中,∴四边形不可能是菱形,故①错误;∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,∴四边形的面积,故②正确;由已知得顺次连接四边形的四边中点得到的四边形是矩形,不是正方形,故③错误;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,

连接AF,设点F到直线AB的距离为h,

由折叠可得,四边形ABED是菱形,AB=BE=5=AD=DE,BO=DO=4,

∴AO=EO=3,∵BF⊥CD,BF∥AD,∵S△ABF=S梯形ABFD-S△ADF,解得,故④正确故选:D【点睛】本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,第④个稍复杂一些,解决问题的关键是作出正确的图形进行计算.8、B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解答:解:∵≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.9、B【解析】

先将题目中的数据按从小到大的顺序排列,然后根据中位数的定义分析即可.【详解】将题目中的数据按从小到大的顺序排列:6,7,7,8,8,9;中间数字为7和8;中位数为故选B【点睛】本题考查中位数的运算,注意要先将数据按从小到大的顺序排列,再根据中位数的定义分析求解.10、C【解析】试题解析:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,如图,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=1.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=2.故选C.考点:平行四边形的性质.二、填空题(每小题3分,共24分)11、0.8【解析】

根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.【详解】∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE+AD=AE,解得:DE=EF=,故正方形的面积是=,故答案为:0.8【点睛】本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.12、±1.【解析】

过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】解:因为△AOM的面积是3,所以|k|=2×3=1.所以k=±1.故答案为:±1.【点睛】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,这里体现了数形结合的思想,正确理解k的几何意义是关键.13、x<-2或0<x<1.【解析】

利用图像即可求出不等式的解集.【详解】结合图像可知:当x<-2或0<x<1时,关于x的不等式ax+b>mx故答案为x<-2或0<x<1.【点睛】题考查了反比例函数和一次函数的交点问题,解题的关键是灵活运用数形结合的思想.14、1【解析】

利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=×1×4=1.

故答案为1.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;

菱形的四条边都相等;

菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).

记住菱形面积=ab(a、b是两条对角线的长度).15、1【解析】

根据开平方运算的法则计算即可.【详解】1.故答案为:1.【点睛】本题考查了实数的运算-开方运算,比较简单,注意符号的变化.16、2【解析】

根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.【详解】作点E′和E关于BD对称.则连接AE′交BD于点P,

∵四边形ABCD是菱形,AB=4,E为AD中点,

∴点E′是CD的中点,

∴DE′=DC=×4=2,AE′⊥DC,

∴AE′=.

故答案为2.【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.17、6【解析】

根据众数的定义可得结论.【详解】解:数据5,5,6,6,6,7,7,其中数字5出现2次,数字6出现3次,数字7出现2次,所以众数为6.故答案为:6【点睛】本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.18、x>﹣1.【解析】试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.考点:一次函数与一元一次不等式三、解答题(共66分)19、(1);(2);(3).【解析】

(1)将A,E的坐标代入解析式即可解答(2)根据题意可知CD=2,将其代入解析式,即可求出点C(3)根据题意可分情况讨论:当时,;当时,,即可解答【详解】(1)设直线的解析式为,因为经过点,点.,解得:,∴.(2)当时,,,∴.(3)当时,如图1.点的横坐标为,点的横坐标为.∴当时,,∴,∴当时,,∴.∴.当时,如图2.∴综上.【点睛】此题考查一次函数与几何图形,解题关键在于将已知点代入解析式20、(1)60,见解析,84;(2)C;(3)1500人【解析】

(1)用A类人数除以它所占的百分比得到调查的总人数;用总人数减去A、B、C、E组的人数即可得到D组人数,可以补全直方图;然后用B类人数除以调查的总人数×360°即可得到m的值;(2)根据总人数确定中位数是第几个数据,再从直方图中找出这个数据落在哪一组;(3)先算出抽样调查中“一分钟跳绳”成绩大于等于120次的人数,除以调查的总人数再乘以2250即可得到答案【详解】解:(1)6÷10%=60,所以抽样人数为60人;60-(6+14+19+5)=16人,所以补全直方图如下:扇形统计图中B所对应的圆心角为14÷60×360°=84°,所以84;故答案为:60,见解析,84(2)∵调查总人数为60∴中位数应该是第30和第31个数据的平均数由图可知第30、31个数据都落在C组,所以中位数落在C组故答案为C(3)由图知:“一分钟跳绳”成绩大于等于120次的调查人数为19+16+5=40人∴人所以该校2250名学生中“1分钟跳绳”成绩为优秀的大约有1500人故答案为1500.【点睛】本题考查了条形统计图与扇形统计图,样本估计总体以及中位数等,注意计算要认真.21、(1)8元;(2)1元.【解析】

(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批手机壳进货单价为x元,

根据题意得:3•=,

解得:x=8,

经检验,x=8是分式方程的解.

答:第一批手机壳的进货单价是8元;

(2)设销售单价为m元,

根据题意得:200(m-8)+600(m-10)≥2000,

解得:m≥1.

答:销售单价至少为1元.【点睛】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22、(1)点的坐标;(2)图见解析;的坐标【解析】

(1)根据对称点的方法很容易可写出C1的坐标.(2)首先根据位似中心画出位似图形,在写坐标即可.【详解】解:(1)点的坐标;(2)如图所示点的坐标【点睛】本题主要考查位似图形的画法,关键在于位似中心,这是直角坐标系的必考题,必须熟练掌握.23、(1)y=-x+4;(2)x<1;(3)当△CMN是直角三角形时,点N的坐标为(-4,0),(0,2),(-2,0),(0,3).【解析】

(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A,C的坐标,利用待定系数法即可求出此一次函数的解析式;(2)由(1)的结论可得出y=-4x+4,令y=0可求出该直线与x轴的交点坐标,再利用一次函数的性质即可求出不等式(k-3)x+b>0的解集;(3)利用一次函数图象上点的坐标特征可求出点M的坐标,分∠CMN=90°,∠MCN=90°及∠CNM=90°三种情况,利用等腰直角三角形的性质可求出点N的坐标.【详解】(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(-2,6),C(1,3)代入,得:,解得:,∴此一次函数的解析式为;(2)令,即,解得:.∵-4<0,∴y的值随x值的增大而减小,∴不等式>0的解集为x<1;(3)∵直线AB的解析式为,∴点M的坐标为(0,4),∴OB=OM,∴∠OMB=45°.分三种情况考虑,如图所示.①当∠CMN=90°时,∵∠OMB=45°,∴∠OMN=45°,∠MON=90°,∴∠MNO=45°,∴OM=ON,∴点N1的坐标为(-4,0);②当∠MCN=90°时,∵∠CMN=45°,∠MCN=90°,∴∠MNC=45°,∴CN=CM==,∴MN=CM=2,∴点N2的坐标为(0,2).同理:点N3的坐标为(-2,0);③当∠CNM=90°时,CN∥x轴,∴点N4的坐标为(0,3).综上所述:当△CMN是直角三角形时,点N的坐标为(-4,0),(0,2),(-2,0),(0,3).【点睛】本题是一次函数与几何的综合题,考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用一次函数的性质,求出不等式的解集;(3)分∠CMN=90°,∠MCN=90°及∠CNM=90°三种情况,利用等腰直角三角形的性质求出点N的坐标.24、(1)证明见解析;(2).【解析】试题分析:(1)利用直角三角形斜边中线是斜边一半,求得DE=AE=AF=DF,所以AEDF是菱形.(2)由(1)得,AEDF是菱形,求得菱形对角线乘积的一半,求面积.试题解析:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论