版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北襄阳五中学实验中学八年级下册数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为()A.10x-5(20-x)≥90 B.10x-5(20-x)>90C.20×10-5x>90 D.20×10-5x≥902.如图,中,,,将绕点顺时针旋转得到出,与相交于点,连接,则的度数为()A. B. C. D.3.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.74.在▱ABCD中,对角线AC,BD交于点O,下列结论错误的是()A.∠ABO=∠CDO B.∠BAD=∠BCDC.AB=CD D.AC⊥BD5.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为()A.(-2,3) B.(2,-3) C.(3,-2) D.(-3,2)6.下列各组数是勾股数的是()A. B.1,1, C. D.5,12,137.如图,△ABC中,D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.2.5 B.2 C.1.5 D.18.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85 B.86 C.87 D.889.下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是()A. B.C. D.10.满足下列条件的四边形不是正方形的是()A.对角线相互垂直的矩形 B.对角线相等的菱形C.对角线相互垂直且相等的四边形 D.对角线垂直且相等的平行四边形二、填空题(每小题3分,共24分)11.阅读下面材料:在数学课上,老师提出如下问题:已知:如图,△ABC及AC边的中点O.求作:平行四边形ABCD.①连接BO并延长,在延长线上截取OD=BO;②连接DA、DC.所以四边形ABCD就是所求作的平行四边形.老师说:“小敏的作法正确.请回答:小敏的作法正确的理由是__________.12.若关于x的分式方程有增根,则k的值为__________.13.观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.14.计算:_______________.15.当时,二次根式的值是_________.16.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.17.如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.18.若,,则的值是__________.三、解答题(共66分)19.(10分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元。(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。20.(6分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.21.(6分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?22.(8分)如图,为了美化环境,建设魅力呼和浩特,呼和浩特市准备在一个广场上种植甲、乙两种花卉经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米100元(1)直接写出当和时,与的函数关系式.(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?23.(8分)宝安区某街道对长为20千米的路段进行排水管道改造后,需对该段路面全部重新进行修整,甲、乙两个工程队将参与施工,已知甲队每天的工作效率是乙队的2倍,若由甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天.(1)求甲队每天可以修整路面多少米?(2)若街道每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算55万元,为了不超出预算,至少应该安排甲队参与工程多少天?24.(8分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.25.(10分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.(1)求证:△AOD≌△BOE;(2)若DC=DE,判断四边形AEBD的形状,并说明理由.26.(10分)某公司生产某环保产品的成本为每件40元,经过市场调研发现:这件产品在未来两个月天的日销量件与时间天的关系如图所示未来两个月天该商品每天的价格元件与时间天的函数关系式为:根据以上信息,解决以下问题:请分别确定和时该产品的日销量件与时间天之间的函数关系式;请预测未来第一月日销量利润元的最小值是多少?第二个月日销量利润元的最大值是多少?为创建“两型社会”,政府决定大力扶持该环保产品的生产和销售,从第二个月开始每销售一件该产品就补贴a元有了政府补贴以后,第二个月内该产品日销售利润元随时间天的增大而增大,求a的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.【详解】解:根据题意,得
10x-5(20-x)>1.
故选:B.【点睛】本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.2、C【解析】
由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.【详解】∵将△ABC绕点C顺时针旋转40°得到△A′B′C,∴△ABC≌△A′B′C∴AC=A′C,∠ACA′=40∘,∠BAC=∠B′A′C=90°,∴∠AA′C=70°=∠A′AC∴∠B′A′A=∠B′A′C−∠AA′C=20°故选C.【点睛】此题考查旋转的性质,等腰三角形的性质,解题关键在于得出得∠AA'C=70°=∠A'AC.3、C【解析】
解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选C.4、D【解析】
由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,对角相等;两直线平行,内错角相等;即可求得答案.【详解】解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AB∥CD,∠BAD=∠BCD,∴∠ABO=∠CDO.所以A、B、C正确.
故选:D.【点睛】本题考查平行四边形的性质.注意平行四边形的对边相等,对角相等,对角线互相平分定理的应用是解此题的关键.5、B【解析】试题分析:根据点P在第四象限,所以P点的横坐标在x轴的正半轴上,纵坐标在y轴的负半轴上,由P点到x轴的距离为3,到y轴的距离为2,即可推出P点的横、纵坐标,从而得出(2,-3).故选B.考点:平面直角坐标系6、D【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A.()2+()2≠()2不能构成直角三角形,不是正整数,故不是勾股数.B.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;C.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;D.()2+()2=()2能构成直角三角形,是正整数,故是勾股数.故答案选D【点睛】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.7、C【解析】
利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可.【详解】解:∵DE是△ABC的中位线,∴DE=BC=1.∵∠AFB=90°,D是AB的中点,∴DF=AB=2.2,∴EF=DE-DF=1-2.2=1.2.故选:C.【点睛】本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.8、D【解析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选D.【点睛】本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.9、C【解析】
根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.【详解】A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;故选:C.【点睛】本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.10、C【解析】A.对角线相互垂直的矩形是正方形,故本项正确;B.对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D.对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.二、填空题(每小题3分,共24分)11、对角线互相平分的四边形是平行四边形【解析】试题解析:∵O是AC边的中点,∴OA=OC,∵OD=OB,∴四边形ABCD是平行四边形,则依据:对角线互相平分的四边形是平行四边形.故答案为:对角线互相平分的四边形是平行四边形.12、或【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13、【解析】
第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(n≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.【详解】解:∵①,
②,
③,……
∴第n个式子为:,
∴第6个等式为:
故答案为:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14、1【解析】根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.解:(-)1=(-)(-)=1.
故答案为:1.15、3【解析】
根据题意将代入二次根式之中,然后进一步化简即可.【详解】将代入二次根式可得:,故答案为:3.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.16、1【解析】试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB===10,∴BD=2OB=1.故答案为:1.17、.【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.【详解】如图,作AE⊥OB于E,A′H⊥OB于H.∵A(1,),∴OE=1,AE=,∴OA==2,∵△OAB是等边三角形,∴∠AOB=60°,∵∠AOA′=15°,∴∠A′OH=60°﹣15°=45°,∵OA′=OA=2,H⊥OH,∴A′H=OH=,∴(,),故答案为:(,).【点睛】此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.18、2【解析】
提取公因式因式分解后整体代入即可求解.【详解】.故答案为:2.【点睛】此题考查因式分解的应用,解题关键在于分解因式.三、解答题(共66分)19、(1)1只A型节能灯的售价为5元,1只B型节能灯的售价为7元;(2)购买60只A型节能灯,20只B型节能灯最省钱,理由见解析【解析】
(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价y元,根据题意列出方程组,求出方程组的解即可;(2)设A型节能灯买了a只,则B型节能灯买了(80-a)只,共花费w元,根据题意列出不等式组,求出不等式组的解集即可.【详解】解(1)设1只A型节能灯的售价为x元,1只B型节能灯的售价为y元由题意得:解得:答:1只A型节能灯的售价为5元,1只B型节能灯的售价为7元(2)设购买A型节能灯a个,则购买B型节能灯(80-a)个,总费用为w元由题意得:a≤3(80-a)解得a≤60又∵w=5a+7(80-a)=-2a+560∴w随a的增大而减小∴当a取最大值60时,w有最小值w=-2×60+560=440即购买60只A型节能灯,20只B型节能灯最省钱【点睛】本题考查了解二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组或不等式组是解此题的关键.20、四边形的周长为8.【解析】
根据、分别为的边、的中点,且证明四边形是平行四边形,再证明平行四边形是菱形即可求解.【详解】解:∵、分别为的边、的中点,∴.又∵,∴四边形是平行四边形.又∵,∴平行四边形是菱形.,∴,∴四边形的周长为8.【点睛】本题考查了平行四边形及菱形的判定和性质,证明四边形是菱形是解本题的关键.21、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30-a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.22、(1);(2)应该分配甲、乙两种花卉的种植面积分别是800m2
和400m2,才能使种植总费用最少,最少总费用为121000元.【解析】
(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.
(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200−a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.【详解】解:(1)当0≤x≤300,设y=kx,将点(300,36000)代入得:36000=300k,∴k=120,当x>300,设y=mx+n,将点(300,36000)及点(500,54000)代入得,解得m=90,n=9000,∴y=90x+9000,∴,(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200−a)m2,由题意得:,
∴200≤a≤800当200≤a≤300时,W1=120a+100(1200−a)=20a+1.∵20>0,W1随a增大而增大,
∴当a=200
时.Wmin=124000
元
当300<a≤800时,W2=90a+9000+100(1200−a)=−10a+2.
∵-10<0,W2随a增大而减小,当a=800时,Wmin=121000
元
∵124000>121000
∴当a=800时,总费用最少,最少总费用为121000元.
此时乙种花卉种植面积为1200−800=400(m2).
答:应该分配甲、乙两种花卉的种植面积分别是800m2
和400m2,才能使种植总费用最少,最少总费用为121000元.【点睛】本题是看图写函数解析式并利用解析式的题目,考查分段函数的表达式和分类讨论的数学思想,熟悉待定系数法求一次函数解析式及一次函数的性质是解题的关键.23、(1)1米;(2)2天【解析】
(1)设甲队每天可以修整路面x米,则乙队每天可以修整路面x米,根据“甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天”列出方程并解答;(2)设应该安排甲队参与工程y天,根据“每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算5.5万元”列出不等式并解答.【详解】解:(1)设甲队每天可以修整路面x米,则乙队每天可以修整路面x米,根据题意,得+5=解得x=1.经检验,x=1是原方程的根,且符合题意.答:甲队每天可以修整路面1米;(2)设应该安排甲队参与工程y天,根据题意,得0.4y+×0.25≤55解得y≥2.故至少应该安排甲队参与工程2天,.【点睛】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键.24、(1)8;(2);(3)3.【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;
(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.【详解】解:(1)∵四边形BEFH为平行四边形
∴BE=HF,BH=EF
∵四边形EFGC,四边形ABCD都是正方形
∴EF=EC,BC=CD=4=AD
∴BH=EC,且BC=CD
∴Rt△BHC≌Rt△CED(HL)
∴CH=DE
∵H为CD中点,
∴CH=2=DE
∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°
∴Rt△ABE≌Rt△DCE(SAS)
∴BE=EC
∴BE=EF=HF=BH=EC
∵CH=2,BC=4
∴BH===2
∴四边形BEFH的周长=BE+BH+EF+FH=8;
(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点M,
∵AE=1,
∴DE=3
∵∠FEM+∠CEM=90°,∠CEM+∠ECD=90°
∴∠FEM=∠ECD,且CE=EF,∠EDC=∠EMF=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人承包户外广告牌安装合同范本3篇
- 二零二五年度房产更名买卖合同绿色环保生活3篇
- 二零二五年度教育培训机构委托合作合同3篇
- 二零二五年度城市更新项目安置房买卖合同2篇
- 二零二五年度化妆品广告创意制作与品牌合作合同3篇
- 海南职业技术学院《中文信息处理技术》2023-2024学年第一学期期末试卷
- 海南外国语职业学院《地质微生物学》2023-2024学年第一学期期末试卷
- 二零二五年度建筑工程二次结构承包与建筑废弃物资源化利用、处理与回收合同3篇
- 2025年度建筑装修用涂料采购及施工一体化合同2篇
- 课程设计技术特性表
- 2023年-2024年岗位安全教育培训试题及答案通用
- 口腔修复学(全套课件290p)课件
- 小学生心理问题的表现及应对措施【全国一等奖】
- 初中学段劳动任务清单(七到九年级)
- 退耕还林监理规划
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 项目实施路径课件
- 《简单教数学》读书心得课件
- 《室速的诊断及治疗》课件
评论
0/150
提交评论