北京市部分区2024届八年级数学第二学期期末复习检测试题含解析_第1页
北京市部分区2024届八年级数学第二学期期末复习检测试题含解析_第2页
北京市部分区2024届八年级数学第二学期期末复习检测试题含解析_第3页
北京市部分区2024届八年级数学第二学期期末复习检测试题含解析_第4页
北京市部分区2024届八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市部分区2024届八年级数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A.,1 B.-,1 C.-,-1 D.,-12.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是()月份123456用水量/t36456aA.4,5B.4.5,6C.5,6D.5.5,63.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是()A.①③ B.①②③ C.①②④ D.①②③④4.点A(-2,5)在反比例函数的图像上,则该函数图像位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为()A.7 B.9 C.3 D.46.如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为()A.4 B.3 C.2.5 D.57.设直角三角形的两条直角边长及斜边上的高分别为a,b及h,则下列关系正确的是()A. B.C. D.8.在函数中,自变量必须满足的条件是()A. B. C. D.9.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④10.如果方程组的解x、y的值相等则m的值是()A.1 B.-1 C.2 D.-211.若分式x2x-2有意义,则A.x≠0 B.x=2 C.x>2 D.x≠212.4名选手在相同条件下各射靶10次,统计结果如下表,表现较好且更稳定的是()选手甲乙丙丁平均环数99.599.5方差4.5445.4A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).14.计算+×的结果是_____.15.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则小明和小强的成绩中,__________的成绩更稳定.16.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.17.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.18.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.三、解答题(共78分)19.(8分)《九章算术》卷九中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?20.(8分)如图,矩形纸片ABCD中,AD=4,AB=8,把纸片沿直线AC折叠,使点B落在E处,AE交DC于点F,求△CEF的面积.21.(8分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2)从图中看,小明与小亮哪次的成绩最好?(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?22.(10分)解方程(1)(2)(3)(4)(公式法)23.(10分)如图,在平面直角坐标系中,直线y=-x+8分别交两轴于点A,B,点C的横坐标为4,点D在线段OA上,且AD=7.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A,C,D,F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,不必说明理由.24.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.25.(12分)已知y与x+3成正比例,且当x=1时,y=8(1)求y与x之间的函数关系式;(2)若点(a,6)在这个函数的图象上,求a的值.26.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.

参考答案一、选择题(每题4分,共48分)1、D【解析】分析:由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.详解:∵在直线中,当时,,∴直线过点(0,1),又∵直线是由直线向右平移4个单位长度得到的,∴,且直线过点(4,1),∴,解得:,∴.故选D.点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.2、D【解析】

先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),

∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,

则该户今年1至6月份用水量的中位数为=5.5、众数为6,

故选:D.【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.3、A【解析】

根据条形统计图中的信息对4个结论进行判断即可.【详解】由条形统计图可知,从2012年到2018年,博物馆参观人数呈现持续增长态势,故①正确;从2012年到2018年增加了10.08-5.64=4.44(亿人次),平均每年增加4.44÷6=0.74(亿人次)则2019年将会达到10.08+0.74=10.82(亿人次),故②正确;2013年增加了6.34-5.64=0.7(亿人次),2014年增加了7.18-6.34=0.84(亿人次),2015年增加了7.81-7.18=0.63(亿人次),2016年增加了8.50-7.81=0.69(亿人次),2017年增加了9.72-8.50=1.22(亿人次),2018年增加了10.08-9.72=0.36(亿人次),则2017年增幅最大,故③正确;设从2016年到2018年年平均增长率为x,则8.50(1+x)2=10.08解得x≈0.09(负值已舍),即年平均增长约为9%,故④错误;综上可得正确的是①②③.故选:B.【点睛】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.4、D【解析】

根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.【详解】∵反比例函数的图像经过点(-2,5),∴k=(-2)×5=-10,∵-10<0,∴该函数位于第二、四象限,故选:D.【点睛】本题考查反比例函数上的点坐标的特点,反比例函数上的点横、纵坐标之积等于k;本题也考查了反比例函数的性质,对于反比例函数,当k大于0时,图像位于第一、三象限,当k小于0,图像位于第二、四象限.5、A【解析】

根据勾股定理得到AC==25,连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.【详解】解:连接BD,交AC于点O,在△ABC中,∠ABC=90°,AB=20,BC=15,

∴AC==25,

连接BD交AC于O,

∵四边形BCDE为菱形,

∴BD⊥CE,BO=DO,EO=CO,

∴BO===12,

∴OC==9,

∴CE=2OE=18,

∴AE=7,

故选:A.【点睛】本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.6、C【解析】

利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵,点是的中点,∴AD=BD=CD=AB=1,∵BF=DF,BE=EC,∴EF=CD=2.1.故选:C.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.7、A【解析】

设斜边为c,根据勾股定理即可得出,再由三角形的面积公式即可得出结论.【详解】解:设斜边为c,根据勾股定理即可得出,,,即a2b2=a2h2+b2h2,,即,故选:A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8、B【解析】

由函数表达式是分式,考虑分式的分母不能为0,即可得到答案.【详解】解:∵函数,∴,∴;故选:B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为0.9、D【解析】试题解析:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.10、B【解析】

由题意x、y值相等,可计算出x=y=2,然后代入含有m的代数式中计算m即可【详解】x、y相等即x=y=2,x-(m-1)y=6即2−(m-1)×2=6解得m=-1故本题答案应为:B【点睛】二元一次方程组的解法是本题的考点,根据题意求出x、y的值是解题的关键11、D【解析】

本题主要考查分式有意义的条件:分母不能为1.【详解】解:由代数式有意义可知:x﹣2≠1,∴x≠2,故选:D.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.12、B【解析】

先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.【详解】解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,

∴表现较好且更稳定的是乙,

故选:B.【点睛】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题(每题4分,共24分)13、小于【解析】

先分别求出摸出各种颜色球的概率,再进行比较即可得出答案.【详解】解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,∴摸出白球可能性<摸出黄球的可能性;故答案为小于.【点睛】本题主要考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.14、.【解析】原式===,故答案为.【点睛】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.15、小明【解析】

在平均数相等的前提下,方差或标准差越小,说明数据越稳定,结合题意可知,只需比较小明、小强两人成绩的方差即可得出答案.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8;

∴平均成绩一样,小明的方差小,则小明的成绩稳定.

故选A.【点睛】本题考查方差的实际应用,解题的关键是掌握方差的使用.16、1.【解析】

根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=1.故答案为1.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.17、1【解析】

利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.18、105°或45°【解析】试题分析:如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,考点:(1)、菱形的性质;(2)、等腰三角形的性质三、解答题(共78分)19、绳索长为尺.【解析】

设绳索长为x尺,则根据题意可得斜边为x,直角边分别是8和x-3的直角三角形,然后运用勾股定理列方程解答即可.【详解】解:设绳索长为尺,根据题意得:答:绳索长为尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题20、S△CEF=6.【解析】

先利用全等三角形的判定与的性质求出FD=FE,FA=FC,设FD=x,则FA=FC=8-x,利用勾股定理求出x,即可解答【详解】AD=EC,∠D=∠C,∠AFD=∠CFE,所以,△AFD≌△CFE,所以,FD=FE,FA=FC,设FD=x,则FA=FC=8-x在Rt△ADF中,42+x2=(8-x)2,解得:x=3,所以,FD=3,S△CEF=S△ADF==6【点睛】此题考查全等三角形的判定与性质,勾股定理,解题关键在于求出FD=321、(1)见解析;(2)小明第4次成绩最好,小亮第3次成绩最好;(3)小明平均数:13.3,方差为:0.004;小亮平均数为:13.3,方差为:0.02;建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.【解析】

(1)、(2),根据图形,分别找出小明第4次成绩和小亮第2次的成绩,进而补全表格,再结合统计图找出小明和小亮的最好成绩即可;(3)根据平均数和方差的计算公式分别求出小明和小亮的平均成绩和方差即可.【详解】(1)根据统计图补齐表格,如下:(2)由图可得,小明第4次成绩最好,小亮第3次成绩最好.(3)小明的平均成绩为:(13.3+13.4+13.3+13.2+13.3)=13.3(秒),方差为:×[(13.3-13.3)+(13.4-13.3)+(13.3-13.3)+(13.2-13.3)+(13.3-13.3)]=0.004;小亮的平均成绩为:(13.2+13.4+13.1+13.5+13.3)÷5=13.3(秒),方差为×[(13.2-13.3)+(13.4-13.3)+(13.1-13.3)+(13.5-13.3)+(13.3-13.3)]=0.02.从平均数看,两人的平均水平相等;从方差看,小明的成绩较稳定,小亮的成绩波动较大.建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.【点睛】此题考查折线统计图,方差,算术平均数,解题关键在于掌握运算法则,看懂图中数据22、(1)x=-(2)x=1(3)x1=6,x2=0(4)x1=2,x2=-【解析】

(1)根据分式方程的解法去分母化为整式方程,故可求解;(2)根据分式方程的解法去分母化为整式方程,故可求解;(3)根据直接开平方法即可求解(4)先化为一般式,再利用公式法即可求解.【详解】(1)x=-经检验,x=-是原方程的解;(2)x-5=8x-12-7x=-7x=1经检验,x=1是原方程的解;(3)x-3=±3x-3=3,x-3=-3x1=6,x2=0;(4)这里a=2,b=-1,c=-6∴△=b2-4ac=1+4×2×6=49>0∴x==∴x1=2,x2=-.【点睛】此题主要考查分式方程与一元二次方程的求解,解题的关键是熟知其解法.23、(1)点D(1,0);(2)y=43x-43;(3)点F的坐标是(11,4)【解析】

(1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点D在线段OA上,且AD=7,即可求出点D的坐标;(2)利用待定系数法可求直线CD的解析式;(3)设点F(x,y),分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.【详解】解:(1)∵直线y=-x+8分别交两轴于点A,B,∴当x=0时,y=8,当y=0时,x=8∴点A(8,0),点B(0,8)∵点D在线段OA上,且AD=7.∴点D(1,0)(2)∵点C的横坐标为4,且在直线y=-x+8上,∴y=-4+8=4,∴点C(4,4)设直线CD的解析式y=kx+b∴4=4k+b0=k+b,解得:∴直线CD解析式为:y=43(3)设点F(x,y)①若以CD,AD为边,∵四边形ADCF是平行四边形,∴AC,DF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴4+82=1+x∴点F(11,4)②若以AC,AD为边∵四边形ADFC是平行四边形,∴AF,CD互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴8+x2=4+1∴点F(-3,4)③若以CD,AC为边,∵四边形CDFA是平行四边形,∴AD,CF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴1+82=4+x∴点F(5,-4)综上所述:点F的坐标是(11,4),(5,-4),(-3,4).【点睛】此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.24、(1)AP=BQ;(1)QM的长为;(2)AM的长为.【解析】

(1)要证AP=BQ,只需证△PBA≌△QCB即可;(1)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=2,BP=1,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=1.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中运用勾股定理就可解决问题;(2)过点Q作QH⊥AB于H,如图,同(1)的方法求出QM的长,就可得到AM的长.【详解】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(1)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=2.∵BP=1PC,∴BP=1,PC=1,∴BQ=AP===,∴BH===1.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中,根据勾股定理可得x1=(x-1)1+21,解得x=.∴QM的长为;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ1=AP1=AB1+PB1,∴BH1=BQ1-QH1=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论