2024年焦作市八年级下册数学期末监测试题含解析_第1页
2024年焦作市八年级下册数学期末监测试题含解析_第2页
2024年焦作市八年级下册数学期末监测试题含解析_第3页
2024年焦作市八年级下册数学期末监测试题含解析_第4页
2024年焦作市八年级下册数学期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年焦作市八年级下册数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.120° B.90° C.60° D.30°2.下列给出的条件中不能判定一个四边形是矩形的是(

)A.一组对边平行且相等,一个角是直角B.对角线互相平分且相等C.有三个角是直角D.一组对边平行,另一组对边相等,且对角线相等3.如图,菱形的面积为,正方形的面积为,则菱形的边长为()A. B. C. D.4.化简(+2)的结果是()A.2+2 B.2+ C.4 D.35.若(x﹣2)x=1,则x的值是()A.0 B.1 C.3 D.0或36.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量7.已知四边形是平行四边形,下列结论中正确的个数有()①当时,它是菱形;②当时,它是菱形;③当时,它是矩形;④当时,它是正方形.A.4 B.3 C.2 D.18.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为()A.(2,2) B.(2,) C.(,2) D.(+1,9.下列各式中,与3是同类二次根式的是()A.6 B.12 C.15 D.1810.若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.二、填空题(每小题3分,共24分)11.如果a-b=2,ab=3,那么a2b-ab2=_________;12.已知x、y为直角三角形两边的长,满足,则第三边的长为________.13.如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=40°,则∠AOD的度数为_____.14.某电信公司推出两种上宽带的网的按月收费方式,两种方式都采取包时上网,即上网时间在一定范围内,收取固定的月使用费;超过该范围,则加收超时费.若两种方式所收费用(元)与上宽带网时间(时)的函数关系如图所示,且超时费都为1.15元/分钟,则这两种方式所收的费用最多相差__________元.15.如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是_____.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.17.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.18.如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.三、解答题(共66分)19.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)20.(6分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.21.(6分)如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。(1)求证:四边形ABEF是平行四边形;(2)当AB=AC时,求证:四边形AECF时矩形;(3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。22.(8分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)直接写出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车出发多长时间后,两车恰好相距40km?23.(8分)如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长24.(8分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.25.(10分)如图,中,是上的一点,若,,,,求的面积.26.(10分)如图,在平面直角坐标系中,的三个顶点分别是、、.(1)画出关于点成中心对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;(2)△和△关于某一点成中心对称,则对称中心的坐标为.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据直角三角形两锐角互余解答.【详解】由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:B.【点睛】此题考查直角三角形的性质,解题关键在于掌握其性质.2、D【解析】

利用矩形的判定定理:①有三个角是直角的四边形是矩形可对C作出判断;根据一组对边平行且相等的四边形是平行四边形及有一个角是直角的平行四边形是矩形,可对A作出判断;利用对角线互相平分的四边形是平行四边形,及对角线相等的平行四边形是矩形,可对B作出判断;即可得出答案.【详解】解:A.∵一组对边平行且相等的四边形是平行四边形,且此四边形有一个角是直角,∴此四边形是矩形,故A不符合题意;B、∵对角线互相平分的四边形是平行四边形,∵此四边形的对角线相等,∴此四边形是矩形,故B不符合题意;C、有三个角是直角的四边形是矩形,故C不符合题意;D、一组对边平行,另一组对边相等,且对角线相等的四边形可能是等腰梯形,故D符合题意;故答案为:D【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.3、A【解析】

根据正方形的面积可用对角线进行计算解答即可.【详解】解:因为正方形AECF的面积为50cm2,

所以AC==10cm,

因为菱形ABCD的面积==120,

所以BD==24cm,

所以菱形的边长==13cm.

故选:A.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.4、A【解析】试题解析:(+2)=2+2.故选A.5、D【解析】

根据零指数幂的性质解答即可.【详解】解:∵(x﹣2)x=1,∴x﹣2=1或x=0,解答x=3或x=0,故选D.【点睛】本题考查了零指数幂的性质,熟记零指数幂的性质是解题的关键.6、B【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、B【解析】

根据特殊平行四边形的判定即可判定.【详解】四边形是平行四边形,①当时,邻边相等,故为菱形,正确;②当时,对角线垂直,是菱形,正确;③当时,有一个角为直径,故为矩形,正确;④当时,对角线相等,故为矩形,故错误,由此选B.【点睛】此题主要考查特殊平行四边形的判定,解题的关键是熟知特殊平行四边形的判定定理.8、B【解析】

连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.【详解】连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,),∴OA=,∴OB=OA=1,AB=2OB=2,∴AD=AB=2,而AD平行x轴,∴D(2,).故选:B.【点睛】考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质9、B【解析】

先化简二次根式,再根据同类二次根式的定义判定即可.【详解】解:A、6与3的被开方数不同,不是同类二次根式,故本选项错误.

B、12=23,与3的被开方数相同,是同类二次根式,故本选项正确.

C、15与3的被开方数不同,不是同类二次根式,故本选项错误.

D、18=32,与3的被开方数不同,不是同类二次根式,故本选项错误.

故选:B.【点睛】本题考查同类二次根式,解题的关键是二次根式的化简.10、C【解析】

求出两个不等式的解集,再根据有解列出不等式组求解即可:【详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.二、填空题(每小题3分,共24分)11、6【解析】

首先将a2b-ab2提取公因式,在代入计算即可.【详解】解:代入a-b=2,ab=3则原式=故答案为6.【点睛】本题主要考查因式分解的计算,关键在于提取公因式,这是基本知识点,应当熟练掌握.12、、或.【解析】试题分析:∵|x2-4|≥0,,∴x2-4=0,y2-5y+6=0,∴x=2或-2(舍去),y=2或3,①当两直角边是2时,三角形是直角三角形,则斜边的长为:;②当2,3均为直角边时,斜边为;③当2为一直角边,3为斜边时,则第三边是直角,长是.考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.13、50°【解析】

根据旋转的性质得出全等,根据全等三角形性质求出∠DOC=40°,代入∠AOD=∠AOC﹣∠DOC求出即可.【详解】解:∵△OAB绕点O逆时针旋转90°到△OCD的位置,∠AOB=40°,∴△OAB≌△OCD,∠COA=90°,∴∠DOC=∠AOB=40°,∴∠AOD=∠AOC﹣∠COD=90°﹣40°=50°,故答案为50°14、【解析】

根据题意可以求得两种方式对应的函数解析式,由图象可知,当时,这两种方式所收的费用的差先减小后增大,当时.这两种方式所收的费用的差不变,从而可以解答本题.【详解】解:由题意可得,当时,方式一:,当,方式一:,当时,方式二:,当时,方式二:,当时,,当时,,故答案为:2.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.15、1-1【解析】如图,过P作PE⊥CD,PF⊥BC,∵正方形ABCD的边长是1,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=1,∴∠PCE=30°∴PF=PB•sin60°=1×=,PE=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×1×+×2×1﹣×1×1=1+1﹣8=1﹣1.故答案为1﹣1.点睛:本题考查正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.16、1【解析】

根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:∵∠BCA=90°,D是AB的中点,∴AB=2CD=12cm,∵E、F分别是AC、BC的中点,∴EF=AB=1cm,故答案为1.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17、﹣2≤m≤1【解析】

由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.【详解】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=1经过点A时,则m=1,当直线y=1经过点B时,m+2=1,则m=﹣2;∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;故答案为﹣2≤m≤1.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.18、【解析】

根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.【详解】∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=6,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=3∴DM=6−x,AM=FM=3+x,在Rt△ADM中,由勾股定理得,,即解得x=,所以,AM=3+=,所以,NM=AM−AN=−6=【点睛】本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.三、解答题(共66分)19、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.20、证明见解析.【解析】【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【详解】∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.21、(1)见解析;(2)见解析;(3)四边形AECF是菱形【解析】

(1)利用三角形的中位线定理得出AB∥EF,再由AM∥BC可得出结论;(2)易证ΔADF≌ΔCDE,得出DE=DF,推出四边形AECF是平行四边形,再根据对角线相等的平行四边形是矩形可得结果;(3)利用四边相等的四边形是菱形解答即可.【详解】(1)证明:∵D,E分别为AC,BC的中点,∴AB∥EF,∵AB∥EF,AM∥BC∴四边形ABEF是平行四边形(2)证明:∵AM∥BC∴∠FAC=∠ACE,∠AFE=∠CEF∵AD=DC∴ΔADF≌ΔCDE∴DE=DF∴四边形AECF是平行四边形又∵四边形ABEF是平行四边形∴AB=EF∵AB=AC∴AC=EF∴平行四边形AECF是矩形(3)当∠BAC=90°时,四边形AECF是菱形。理由:∵∠BAC=90°,BE=CE,∴AE=BE=EC,∵四边形ABEF是平行四边形,四边形AECF是平行四边形,∴AF=BE,AE=FC,∴AE=EC=FC=AF,∴四边形AECF是菱形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定与菱形的判定,解题的关键是熟练掌握性质与判定.22、(1)m=1,a=2,(2);(3)小时或小时.【解析】

(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【详解】(1)由题意,得m=1.5-0.5=1.13÷(3.5-0.5)=2,∴a=2.答:a=2,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得2=k1,∴y=2x当1<x≤1.5时,y=2;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=2x-3.∴;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得解得:,∴y=80x-4.当2x-3-2=80x-4时,解得:x=.当2x-3+2=80x-4时,解得:x=.−2=,−2=.答:乙车行驶小时或小时,两车恰好相距2km.【点睛】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.23、(1)证明见解析(2)证明见解析(3)7【解析】

(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.【详解】(1)证明:∵四边形ABCD和四边形BCMD都是菱形,∴BC=CD=AD,BC=DM=CM∴CD=DM=CM=AD,∴△CDM是等边三角形,∴∠M=60°。(2)解:如图2,过点E作EG∥CM交CD的延长线于点G,∴∠G=∠HCF=60°,∠GED=∠M=60°,∴∠G=∠GED=∠EDG=60°,∴△EDG是等边三角形∴EG=DE;∵AD=CM,AE=MF,∴DE=CF,∴EG=CF;在△EGH和△FCH中,∠G=∠HCF∴△EGH≌△FCH(AAS)∴EH=FH.(3)解:如图3,设BD,EF交于点N,由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,∵EF⊥CM,∴∠EFM=90°,∴∠HED=90°-60°=30°,∠CDM=∠HED+∠EHD=60°∴∠EHD=60°-30°=30°=∠HED=∠CHF∴ED=DH=CF,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论