版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省玉溪市名校数学八年级下册期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.矩形的面积为,一边长为,则另一边长为()A. B. C. D.2.下列计算正确的是()A.﹣= B.×=6C.÷2=2 D.=﹣13.数名射击运动员的第一轮比赛成绩如下表所示,则他们本轮比赛的平均成绩是()环数/环78910人数/人4231A.7.8环 B.7.9环 C.8.1环 D.8.2环4.如图,是射线上一点,过作轴于点,以为边在其右侧作正方形,过的双曲线交边于点,则的值为A. B. C. D.15.如图,菱形ABCD中,AB=4,E,F分别是AB、BC的中点,P是AC上一动点,则PF+PE的最小值是()A.3 B. C.4 D.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有()A.1个 B.2个 C.3个 D.4个7.若,则下列式子成立的是()A. B. C. D.8.用配方法解方程变形后为A. B.C. D.9.在下列各组数中,是勾股数的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、610.直角三角形中,两直角边分别是6和8.则斜边上的中线长是()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:=_________.12.要使分式有意义,x需满足的条件是.13.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.14.如图,,的垂直平分线交于点,若,则下列结论正确是______(填序号)①②是的平分线③是等腰三角形④的周长.15.已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,S△AOE=3,S△BOF=5,则▱ABCD的面积是_____.16.如图,将矩形纸片折叠,使点与点重合,其中,则的长度为__________.17.如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____18.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.三、解答题(共66分)19.(10分)如图1,BD是矩形ABCD的对角线,,.将沿射线BD方向平移到的位置,连接,,,,如图1.(1)求证:四边形是平行四边形;(1)当运动到什么位置时,四边形是菱形,请说明理由;(3)在(1)的条件下,将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.20.(6分)为了加强公民的节水意识,合理利用水资源,各地采取价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9,10月份的用水量和所交水费如下表所示:月份用水量(m3收费(元)957.510927设某户每月用水量x(立方米),应交水费y(元)1求a,c的值,当x≤6,x>6时,分别写出y与x的函数关系式.2若该户11月份用水量为8立方米,求该11月份水费多少元?21.(6分)如图,AE∥BF,AC平分∠BAE,交BF于点C.(1)求证:AB=BC;(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹)22.(8分)如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.求证:四边形ADCE是菱形.23.(8分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.24.(8分)如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<1≤10)s.过点E作EF⊥BC于点F,连接DE,DE.(1)用含t的式子填空:BE=________
cm,CD=________
cm.(2)试说明,无论t为何值,四边形ADEF都是平行四边形;(3)当t为何值时,△DEF为直角三角形?请说明理由.25.(10分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.26.(10分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】∵矩形的面积为18,一边长为,∴另一边长为,故选:C.【点睛】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.2、B【解析】
利用二次根式的加减法对A进行判定;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;利用分母有理化可对D进行判断.【详解】A、原式=2﹣=,所以A选项错误;B、原式=2×3=6,所以B选项正确;C、原式=,所以C选项错误;D、原式=,所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、C【解析】由题意可知:这些运动员本轮比赛的平均成绩为(环).故选C.4、A【解析】
设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【详解】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入,得.则点A的坐标为:(m,),线段AB的长度为,点D的纵坐标为.∵点A在反比例函数上,∴即反比例函数的解析式为:∵四边形ABCD为正方形,∴四边形的边长为.∴点C、点D、点E的横坐标为:把x=代入得:.∴点E的纵坐标为:,∴CE=,DE=,∴.故选择:A.【点睛】本题考查了反比例函数和一次函数的结合,解题的关键是找到反比例函数与一次函数的交点坐标,结合正方形性质找到解题的突破口.5、C【解析】
作点E关于AC的对称点E',连接E'F与AC交点为P点,此时EP+PF的值最小;易求E'是AD的中点,证得四边形ABFE'是平行四边形,所以E'F=AB=4,即PF+PE的最小值是4.【详解】作点E关于AC的对称点E',连接E'F,与AC交点为P点,此时EP+PF的值最小;连接EF,∵菱形ABCD,∴AC⊥BD∵E,F分别是边AB,BC的中点,∴E'是AD的中点,∴AE'=AD,BF=BC,E'E⊥EF,∵菱形ABCD,∴AD=BC,AD∥BC,∴AE'=BF,AE'∥BF,∴四边形ABFE'是平行四边形,∴E'F=AB=4,即PF+PE的最小值是4.故选C.【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,通过轴对称作点E关于AC的对称点是解题的关键.6、D【解析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行速度==60米/分;故①符合题意;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80∴乙的速度为80米/分;∴乙走完全程的时间==30分,故②符合题意;由图可得:乙追上甲的时间为(16﹣4)=12分;故③符合题意;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④符合题意;故正确的结论为:①②③④,故选:D.【点睛】本题考查了一次函数的应用,明确题意,读懂函数图像,是解题的关键.7、B【解析】
由,设x=2k,y=3k,然后将其代入各式,化简求值即可得到答案【详解】因为,设x=2k,y=3k∴,故A错,故B对,故C错,故D错选B【点睛】本题考查比例的性质,属于简单题,解题关键在于掌握由,设x=2k,y=3k的解题方法8、A【解析】
在本题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得(x-2)2=1.故选A【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9、C【解析】
判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选C.【点睛】本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.10、C【解析】
利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边==10,
所以,斜边上的中线长=×10=1.
故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据根式的性质即可化简.【详解】解:=【点睛】本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.12、x≠1【解析】试题分析:分式有意义,分母不等于零.解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.考点:分式有意义的条件.13、.【解析】
直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.【详解】∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC=,∵OE⊥BC,∴OE•BC=OB•OC,∴OE=.14、①②③④【解析】
由△ABC中,∠A=36°,AB=AC,根据等腰三角形的性质与三角形内角和定理,即可求得∠C的度数;又由线段垂直平分线的性质,易证得△ABD是等腰三角形,继而可求得∠ABD与∠DBC的度数,证得BD是∠ABC的平分线,然后由∠DBC=36°,∠C=72°,证得∠BDC=72°,易证得△DBC是等腰三角形,个等量代换即可证得④△BCD的周长=AB+BC.【详解】∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C==72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=36°,∴∠ABD=∠DBC,∴BD是∠ABC的平分线;故②正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-36°-72°=72°,∴∠BDC=∠C,∴BC=BD,∴△DBC是等腰三角形;故③正确;∵BD=AD,∴△BCD的周长=BD+BC+CD=AC+BC=AB+BC,故④正确;故答案为:①②③④.【点睛】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15、1【解析】
分析:利用平行四边形的性质可证明△AOF≌△COE,所以可得△COE的面积为3,进而可得△BOC的面积为8,又因为△BOC的面积=▱ABCD的面积,进而可得问题答案.详解::∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE与△COF中∴△AOE≌△COF∴△COEF的面积为3,∵S△BOF=5,∴△BOC的面积为8,∵△BOC的面积=▱ABCD的面积,∴▱ABCD的面积=4×8=1,故答案为1.点睛:本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.16、5【解析】
由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.【详解】由折叠的AE=EC,设AE=x,则EB=8-x∵矩形ABCD∴∠B=90°∴42+(8-x)2=x2∴x=5故AE=5.【点睛】本题考查的是折叠,熟练掌握勾股定理是解题的关键.17、1【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.【详解】由题意AD=5,平行四边形ABCD的AD边上的高为3,∴S平行四边形ABCD=5×3=1,故答案为:1.【点睛】本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.18、1.5【解析】
因为甲过点(0,0),(2,4),所以S甲=2t.因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=三、解答题(共66分)19、(1)见解析;(1)当运动到BD中点时,四边形是菱形,理由见解析;(3)或.【解析】
(1)根据平行四边形的判定定理一组对边相等一组对角相等,即可解答(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【详解】(1)∵BD是矩形ABCD的对角线,,∴,由平移可得,,,∴∴四边形是平行四边形,(1)当运动到BD中点时,四边形是菱形理由:∵为BD中点,∴中,,又∵,∴是等边三角形,∴,∴四边形是菱形;(3)将四边形ABC′D′沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为或.【点睛】此题考查平移的性质,菱形的判定与性质,矩形的性质,图形的剪拼,解题关键在于掌握各性质定理20、(1)y=6x-27;(2)21元.【解析】
(1)依照题意,当x≤6时,y=ax;当x>6时,y=6a+c(x-6),分别把对应的x,y值代入求解可得解析式;(2)将x=8代入(1)题中x>6的函数关系式,求出y的值即可.【详解】解:(1)当x≤6时,设y=ax,∵x=5时,y=7.5,∴5a=7.5,∴a=1.5,∴当x≤6时,y与x的函数关系式为y=1.5x,当x>6时,设y=1.5×6+cx-6,∵x=9时,y=27,∴1.5×6+9-6∴c=6,
∴当x>6时,y与x的函数关系式为y=6x-27;(2)当x=8时,y=6×8-27=21,∴该户11月份水费是21元.故答案为:(1)y=6x-27;(2)21元.【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.21、(1)证明见解析;(2)画图见解析.【解析】
(1)根据平行线的性质和角平分线的定义即可得到结论;
(2)在射线AE上截取AD=AB,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AE∥BF,∴∠EAC=∠ACB,又∵AC平分∠BAE,∴∠BAC=∠EAC,∴∠BAC=∠ACB,∴BA=BC.(2)主要作法如下:【点睛】本题考查了作图-复杂作图,菱形的判定,正确的作出图形是解题的关键.22、证明见解析【解析】试题分析:欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形.23、(1)详见解析;(2),【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.【详解】(1)证明:(方法一).∴无论为何值时,方程总有实数根.(方法二)将代人方程,等式成立,即是原方程的解,因此,无论为何值时,方程总有实数根,(2)把代人方程解得,解方程得【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24、(1)(1)t,10-t;(2)见解析;(3)满足条件的t的值为5s或s,理由见解析【解析】
(1)点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,由路程=时间×速度,得AD=t,CD=10-t,;点E从点B出发沿BA方向以
cm/s的速度向点A匀速运动,所以BE=t;(2)因为△ABC是等腰直角三角形,得∠B=45°,结合BE=t,得EF=t,
又因为∠EFB和∠C都是直角相等,
得AD∥EF,
根据一组对边平行且相等的四边形是平行四边形,证得四边形ADFE是平行四边形;(3)
①当∠DEF=90°时,因为DF平分对角,四边形EFCD是正方形,
这时AD=DE=CD
=5,求得t=5;②当∠EDF=90°时,
由DF∥AE,两直线平行,内错角相等,得∠AED=∠EDF=90°,结合∠A=45°,AD=
AE,据此列式求得t值即可;③当∠EFD=90°,点D、E、F在一条直线上,△DFE不存在.【详解】(1)由题意可得BE=tcm,CD=AC-A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焊接符号大全(详解)
- 钢筋工程施工措施
- 二零二五年度智能语音助手开发与应用合同3篇
- 二零二五年度拆除工程居间服务佣金分成协议8篇
- 2024版合同续约细化合同版
- 基于正态云模型
- 学习2025年全国教育工作会议精神心得体会2篇
- 二零二五年度导游服务派遣协议3篇
- 2025年网络安全培训设计原则及建议
- 图书馆资源的多元利用与价值挖掘
- 棋牌室消防应急预案
- 《ISO56001-2024创新管理体系 - 要求》之22:“8运行-8.2 创新行动”解读和应用指导材料(雷泽佳编制-2024)
- 幼儿园大班主题课程《爱在我身边》主题活动方案
- 广西桂林市(2024年-2025年小学三年级语文)部编版期末考试(上学期)试卷(含答案)
- 煤炭行业智能化煤炭筛分与洗选方案
- 高级会计实务案例分析-第三章 企业全面预算管理
- 2024年数学四年级上册线段、射线和直线基础练习题(含答案)
- 2024至2030年中国防弹衣行业市场全景分析及投资策略研究报告
- 高三日语复习:高考日语语法总结
- 3.16谣言止于智者-正确处理同学关系班会解析
- 2024年美国氟苯尼考市场现状及上下游分析报告
评论
0/150
提交评论