四川省内江市隆昌市2024年八年级下册数学期末联考试题含解析_第1页
四川省内江市隆昌市2024年八年级下册数学期末联考试题含解析_第2页
四川省内江市隆昌市2024年八年级下册数学期末联考试题含解析_第3页
四川省内江市隆昌市2024年八年级下册数学期末联考试题含解析_第4页
四川省内江市隆昌市2024年八年级下册数学期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省内江市隆昌市2024年八年级下册数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,,,是角平分线,,垂足为点.若,则的长是()A. B. C. D.52.下列说法正确的是()A.明天的天气阴是确定事件B.了解本校八年级(2)班学生课外阅读情况适合作抽查C.任意打开八年级下册数学教科书,正好是第5页是不可能事件D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是50003.下列各式,计算结果正确的是()A.×=10 B.+= C.3-=3 D.÷=34.如图,中,,,要判定四边形是菱形,还需要添加的条件是()A.平分 B. C. D.5.如图,一次函数与的图象交点的横坐标为3,则下列结论:①;②;③当时,中,正确结论的个数是()A.0 B.3 C.2 D.16.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-27.如图,D、E分别是AB、AC的中点,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE8.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7 B.2()7 C.2()8 D.()99.如果不等式组有解,那么m的取值范围是A. B. C. D.10.若线段AB=2,且点C是AB的黄金分割点,则BC等于()A.5+1 B.3-5 C.5+1或3-511.下列从左到右的变形,属于因式分解的是()A. B.C. D.12.如图,在平面直角坐标系中,点A、B的坐标分别是(4,0)、(0,3),点O'在直线y=2x(x≥0)上,将△AOB沿射线OO'方向平移后得到△A'O'B’.若点O'的横坐标为2,则点A'的坐标为()A.(4,4) B.(5,4) C.(6,4) D.(7,4)二、填空题(每题4分,共24分)13.若解分式方程的解为负数,则的取值范围是____14.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是_______.15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为__________.16.使式子的值为0,则a的值为_______.17.已知:,,代数式的值为_________.18.如果一个n边形的内角和等于它的外角和的3倍,则n=______.三、解答题(共78分)19.(8分)如图,已知、分别是平行四边形的边、上的点,且.求证:四边形是平行四边形.20.(8分)先化简,再求值:÷(a-1+),其中a=.21.(8分)如图,在矩形中,,分别在,上.(1)若,.①如图1,求证:;②如图2,点为延长线上一点,的延长线交于,若,求证:;(2)如图3,若为的中点,.则的值为(结果用含的式子表示)22.(10分)已知:等腰三角形的一个角,求其余两角与的度数.23.(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。24.(10分)如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.(1)求此抛物线的解析式(a、b、c可用含n的式子表示);(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E的坐标;(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.25.(12分)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.26.如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】

先解直角三角形求出DE的长度,在根据角平分线上的点到角的两边距离相等可得AD=DE,从而得解.【详解】解:∵AB=AC,∠A=90°,

∴∠C=41°,

∵DE⊥BC,CD=1,

∴DE=CD•sin41°=1×=1,

∵BD是角平分线,DE⊥BC,∠A=90°,

∴AD=DE=1.

故选:D.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的性质,难点在于求出DE的长度.2、D【解析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.【详解】解:A、明天的天气阴是随机事件,故错误;

B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;

C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;

D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.3、D【解析】分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.详解:A、原式=,所以A选项错误;B、与不是同类二次根式,不能合并,所以B选项错误;C、原式=2,所以C选项错误;D、原式=,所以D选项正确.故选:D.点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4、A【解析】

当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当平分时,四边形是菱形,理由:∵,∴,∵,∴,∴,∵,,∴四边形是平行四边形,∵,∴四边形是菱形.其余选项均无法判断四边形是菱形,故选:A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、C【解析】

①由一次函数y1=kx+b的图象过第一、二、四象限,即可得出k<0,由此即可得出①正确;②由一次函数y2=x+a的图象过第一、三、四象限,即可得出a<0,由此得出②错误;③根据两一次函数图象的上下位置关系即可得出当x<3时,y1>y2,即③正确.综上即可得出结论.【详解】①∵一次函数y1=kx+b的图象过第一、二、四象限,∴k<0,①正确;②∵一次函数y2=x+a的图象过第一、三、四象限,∴a<0,②错误;③观察函数图象,发现:当x<3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的上方,∴当x<3时,y1>y2,③正确.综上可知:正确的结论为①③.故选:C.【点睛】考查了一次函数与一元一次不等式,解题的关键是逐条分析三个选项是否正确.本题属于基础题,难度不大,解决该题型题目时,熟悉一次函数图象与一次函数系数的关系是关键.6、B【解析】

解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+1.故选B.7、B【解析】

首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【详解】∵E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故选B.【点睛】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.8、B【解析】

根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【详解】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为,于是得到B3的纵坐标为2…∴B8的纵坐标为2故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.9、C【解析】

在数轴上表示两个不等式的解集,若不等式组有解,则有公共部分,可求得m的取值范围.【详解】在数轴上分析可得,不等式组有解,则两个不等式有公共解,那么m的取值范围是.故选:C【点睛】本题考核知识点:不等式组的解.解题关键点:理解不等式组的解的意义.10、D【解析】

分AC<BC、AC>BC两种情况,根据黄金比值计算即可.【详解】解:当AC<BC时,BC=5-12AB=当AC>BC时,BC=2-(5-1)=故选:D.【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(5-111、D【解析】

A.从左到右的变形是整式乘法,不是因式分解;B.右边不是整式积的形式,不是因式分解;C.分解时右边括号中少了一项,故不正确,不符合题意;D.是因式分解,符合题意,故选D.【点睛】本题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.12、C【解析】

利用一次函数图象上点的坐标特征可得出点O′的坐标,再利用平移的性质结合点A的坐标可得出点A′的坐标,即可解答.【详解】解:当x=2时,y=2x=4,

∴点O′的坐标为(2,4).

∵点A的坐标为(4,0),

∴点A′的坐标为(4+2,0+4),即(6,4).

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及坐标与图形的变化-平移,利用一次函数图象上点的坐标特征求出点O′的坐标是解题的关键.二、填空题(每题4分,共24分)13、【解析】试题解析:去分母得,,即分式方程的解为负数,且解得:且故答案为:且14、(5,4).【解析】

利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【详解】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为(5,4).15、【解析】试题解析:设由题意可得:.故答案为.16、【解析】

根据分式值为0,分子为0,分母不为0解答即可.【详解】∵的值为0,∴2a-1=0,a+2≠0,∴a=.故答案为:【点睛】本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.17、4【解析】

根据完全平方公式计算即可求出答案.【详解】解:∵,,∴x−y=2,∴原式=(x−y)2=4,故答案为:4【点睛】本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18、1【解析】

根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.三、解答题(共78分)19、见解析.【解析】

根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出即可.【详解】解:证明:∵四边形是平行四边形,∴,且,∴,∵,∴,∴四边形是平行四边形【点睛】此题考查平行四边形的判定与性质,解题关键在于掌握判定法则20、;【解析】

根据分式的加法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.【详解】解:,,,,当时,原式.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)①见解析;②见解析;(2)【解析】

(1)①由“ASA”可证△ADE≌△BAF可得AE=BF;②过点A作AF⊥HD交BC于点F,由等腰三角形的性质和平行线的性质可得∠HAF=∠AFG=∠DAF,可得AG=FG,即可得结论;(2)过点E作EH⊥DF于H,连接EF,由角平分线的性质可得AE=EH=BE,由“HL”可证Rt△BEF≌Rt△HEF,可得BF=FH,由勾股定理可求解.【详解】证明(1)①∵四边形ABCD是矩形,AD=AB,∴四边形ABCD是正方形,∴AD=AB,∠DAB=90°=∠ABC,∴∠DAF+∠BAF=90°,∵AF⊥DE,∴∠DAF+∠ADE=90°,∴∠ADE=∠BAF,且AD=AB,∠DAE=∠ABF=90°,∴△ADE≌△BAF(ASA),∴AE=BF;②如图,过点A作AF⊥HD交BC于点F,由(1)可知AE=BF,∵AH=AD,AF⊥HD,∴∠HAF=∠DAF.∵AD∥BC,∴∠DAF=∠AFG,∴∠HAF=∠AFG,∴AG=GF,∴AG=GB+BF=GB+AE;(3)如图,过点E作EH⊥DF于H,连接EF,∵E为AB的中点,∴AE=BE=AB,∵∠ADE=∠EDF,EA⊥AD,EH⊥DF,∴AE=EH,AD=DH=nAB,∴BE=EH,EF=EF,∴Rt△BEF≌Rt△HEF(HL),∴BF=FH,设BF=x=FH,则FC=BC-BF=nAB-x,∵DF2=FC2+CD2,∴(nAB+x)2=(nAB-x)2+AB2,∴x==BF,∴FC=AB,∴=4n2-1.【点睛】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.22、见解析.【解析】

根据∠α的情况进行分类讨论求解即可.【详解】当时,由三角形内角和,是顶角,所以当时,①是顶角,所以②是底角,、或、【点睛】本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.23、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)【解析】

(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3,由图读出D1、D2、D3坐标即可.【详解】(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)【点睛】此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.24、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.【解析】

(3)先根据四边形ABCD是矩形,点B的坐标为(n,3)(n>5),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标;把A、A′、C′三点的坐标代入即可得出a、b、c的值,进而得出其抛物线的解析式;

(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k-2)x-3=5,根据根与系数的关系求出k的值,进而求出D(-3,5),E(3,4);

(2)设P(5,p),根据平行四边形性质及点M坐标可得Q(2,4+p),分P点在AM下方与P点在AM上方两种情况,根据重合部分的面积关系及对称性求得点P的坐标后即可得▱APQM面积.【详解】解:(3)∵四边形ABCO是矩形,点B的坐标为(n,3)(n>5),∴A(n,5),C(5,3),∵矩形OA′B′C′由矩形OABC旋转而成,∴A′(5,n),C′(﹣3,5);将抛物线解析式为y=ax2+bx+c,∵A(n,5),A′(5,n),C′(﹣3,5),∴,解得,∴此抛物线的解析式为:y=﹣x2+(n﹣3)x+n;(2)对称轴为x=3,得﹣=3,解得n=2,则抛物线的解析式为y=﹣x2+2x+2.由,整理可得x2+(k﹣2)x﹣3=5,∴x3+x2=﹣(k﹣2),x3x2=﹣3.∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.∴当k=2时,(x3﹣x2)2的最小值为4,即|x3﹣x2|的最小值为2,∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.∴当|x3﹣x2|最小时,抛物线与直线的交点为D(﹣3,5),E(3,4);(2)①当P点在AM下方时,如答图3,设P(5,p),易知M(3,4),从而Q(2,4+p),∵△PMQ′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过AM中点N(5,2),∴可知Q′在y轴上,易知QQ′的中点T的横坐标为3,而点T必在直线AM上,故T(3,4),从而T、M重合,∴▱APQM是矩形,∵易得直线AM解析式为:y=2x+2,∵MQ⊥AM,∴直线QQ′:y=﹣x+,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论