山东省济南市部分学校2024年数学八年级下册期末经典试题含解析_第1页
山东省济南市部分学校2024年数学八年级下册期末经典试题含解析_第2页
山东省济南市部分学校2024年数学八年级下册期末经典试题含解析_第3页
山东省济南市部分学校2024年数学八年级下册期末经典试题含解析_第4页
山东省济南市部分学校2024年数学八年级下册期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市部分学校2024年数学八年级下册期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列命题的逆命题成立的是()A.对顶角相等 B.等边三角形是锐角三角形C.正方形的对角线互相垂直 D.平行四边形的对角线互相平分2.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双12511731该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是()A.方差 B.中位数 C.平均数 D.众数3.实数的值在()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间4.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某校八一班同学的身高情况进行调查C.对某校的卫生死角进行调查D.对全县中学生目前的睡眠情况进行调查5.下列各组线段a、b、c中不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=7,b=24,c=25C.a=40,b=50,c=60 D.a=,b=4,c=56.若直线经过第一、二、四象限,则直线的图象大致是()A. B.C. D.7.下列图形中既是中心对称图形,又是轴对称图形的是()A.正三角形 B.平行四边形 C.等腰梯形 D.正方形8.下列二次根式化简后,能与合并的是()A. B. C. D.9.菱形的两条对角线长分别是6cm和8cm,则它的面积是()A.6cm2 B.12cm2 C.24cm2 D.48cm210.把分式中的x、y的值同时扩大为原来的2倍,则分式的值()A.不变 B.扩大为原来的2倍C.扩大为原来的4倍 D.缩小为原来的一半11.下列说法正确的是()A.明天的天气阴是确定事件B.了解本校八年级(2)班学生课外阅读情况适合作抽查C.任意打开八年级下册数学教科书,正好是第5页是不可能事件D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是500012.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°二、填空题(每题4分,共24分)13.如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.14.计算的结果是.15.若一组数据,,,,的平均数是,则__________.,这组数据的方差是_________.16.在一次捐款活动中,某班第一小组8名同学捐款的金额单位:元如下表所示:这8名同学捐款的平均金额为______元金额元56710人数232117.如图,在中,是边上的中线,是上一点,且连结,并延长交于点,则_________.18.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.三、解答题(共78分)19.(8分)观察下列各式:,,,请利用你所发现的规律,(1)计算;(2)根据规律,请写出第n个等式(,且n为正整数).20.(8分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.21.(8分)在平面直角坐标系中,直线:与坐标轴交于A,B两点,直线:与坐标轴交于点C,D.求点A,B的坐标;如图,当时,直线,与相交于点E,求两条直线与x轴围成的的面积;若直线,与x轴不能围成三角形,点在直线:上,且点P在第一象限.求k的值;若,求m的取值范围.22.(10分)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?23.(10分)如图1,为坐标原点,矩形的顶点,,将矩形绕点按顺时针方向旋转一定的角度得到矩形,此时边、直线分别与直线交于点、.(1)连接,在旋转过程中,当时,求点坐标.(2)连接,当时,若为线段中点,求的面积.(3)如图2,连接,以为斜边向上作等腰直角,请直接写出在旋转过程中的最小值.24.(10分)西蜀图书室近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.(1)求甲、乙两种图书每本的进价分别是多少元?(2)西蜀图书室计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?25.(12分)如图,在中,点是边上的一点,且,过点作于点,交于点,连接、.(1)若,求证:平分;(2)若点是边上的中点,求证:26.已知:如图,在▱ABCD中,设=,=.(1)填空:=(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)

参考答案一、选择题(每题4分,共48分)1、D【解析】

利用对顶角的性质、锐角三角形的定义、正方形的性质及平行四边形的性质分别判断后即可确定正确的选项.【详解】解:A、逆命题为相等的角是对顶角,不成立;

B、逆命题为:锐角三角形是等边三角形,不成立;

C、逆命题为:对角线互相垂直的四边形是正方形,不成立;

D、逆命题为:对角线互相平分的四边形是平行四边形,成立,

故选:D.【点睛】考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.2、D【解析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3、B【解析】

直接利用二次根式的估算,的值在1和,即可得出结果.【详解】解:∵1<<,∴实数的值在1与2之间.故选:B.【点睛】此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.4、D【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,判断即可.【详解】解:A、审核书稿中的错别字适合全面调查;B、对某校八一班同学的身高情况进行调查适合全面调查;C、对某校的卫生死角进行调查适合全面调查;D、对全县中学生目前的睡眠情况进行调查适合抽样调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【解析】

这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:、因为,所以能组成直角三角形;、因为,所以能组成直角三角形;、因为,所以不能组成直角三角形;、因为,所以能组成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、D【解析】

根据直线y=ax+b经过第一、二、四象限,可以判断a和b的正负,从而可以判断直线y=bx+a经过哪几个象限,本题得以解决.【详解】解:∵直线y=ax+b经过第一、二、四象限,

∴a<0,b>0,

∴y=bx+a经过第一、三、四象限,

故选:D.【点睛】本题考查一次函数的性质和图象,解答本题的关键是明确题意,利用一次函数的性质解答.7、D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A.正三角形不是中心对称图形,是轴对称图形,故本选项错误;B.平行四边形是中心对称图形,不是轴对称图形,故本选项错误;C.等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;D.正方形是中心对称图形,也是轴对称图形,故本选项正确.故选D.8、C【解析】

先把各根式化简,与的被开方数相同的,可以合并.【详解】=2,,,因为、、与的被开方数不相同,不能合并;化简后C的被开方数与相同,可以合并.故选C.【点睛】本题考查了同类二次根式的概念.注意同类二次根式是在最简二次根式的基础上定义的.9、C【解析】

已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【详解】根据对角线的长可以求得菱形的面积,根据S=ab=×6cm×8cm=14cm1.故选:C.【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.10、D【解析】

根据分式的基本性质即可求出答案.【详解】解:原式=,∴分式的值缩小为原来的一半;故选择:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11、D【解析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.【详解】解:A、明天的天气阴是随机事件,故错误;

B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;

C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;

D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.12、C【解析】

根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.二、填空题(每题4分,共24分)13、4+4【解析】连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.解:连接EF,∵点E、F分别是边BC、AD边的中点,∴BE=AF=AB=4,又AF∥BE,∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,在Rt△MEF中,由勾股定理,得MF=,由菱形的性质,可知四边形MENF为矩形,∴四边形ENFM的周长=2(ME+MF)=4+4.故答案为4+414、1.【解析】

.故答案为1.15、【解析】

根据平均数的计算方法可求出a,然后根据方差公式求方差即可.【详解】∵,,,,的平均数是,∴1+3+a+2+5=3×5,∴a=4,S2=[(1-3)2+(3-3)2+(4-3)2+(2-3)2+(5-3)2]÷5=2.故答案为:4,2.【点睛】本题考查了算术平均数和方差的计算,熟练掌握计算公式是解答本题的关键.算术平均数的计算公式是:,方差的计算公式为:.16、6.5【解析】

根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【详解】这8名同学捐款的平均金额为元,故答案为:.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.17、1:8.【解析】

先过点D作GD∥EC交AB于G,由平行线分线段成比例可得BG=GE,再根据GD∥EC,得出AE=,最后根据AE:EB=:2EG,即可得出答案.【详解】过点D作GD∥EC交AB于G,∵AD是BC边上中线,∴,即BG=GE,又∵GD∥EC,∴,∴AE=,∴AE:EB=:2EG=1:8.故答案为:1:8.【点睛】本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE、EB、EG之间的关系.18、1.【解析】试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.考点:关于y轴对称三、解答题(共78分)19、(1);(2)【解析】

(1)根据已知数据变化规律进而将原式变形求出答案;(2)根据已知数据变化规律进而将原式变形求出答案.【详解】解:(1)原式===(2)观察下列等式:第n个等式是.【点睛】本题主要考查了数字变化规律,正确将原式变形是解题关键.20、(1);(2)见解析;(3)见解析;(4)见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB===.故答案为.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.∵BC=2,∴=,∴矩形BCDE是黄金矩形.∵==,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH=﹣1,宽HE=3﹣.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.21、(1)A(0,6)B(3,0)(2)8(3)①;②【解析】

(1)根据,令x=0,得到y=6;令y=0,得到x=3,即可解答;(2)当=2时,求出直线l2:与x轴交点D的坐标,从而求出DB的长,再把两直线的解析式组成方程组求出点E的坐标,根据三角形的面积公式求出△BDE的面积;(3)①若直线l1,l2与轴不能围成三角形,则直线l2与l1平行或直线l2经过点B,从而求出k的值;②根据k的值分别求出直线l2解析式,再根据点P(a,b)在直线l2上得到a与b的关系式,从而确定的取值范围.【详解】(1)∵,

∴令x=0,得到y=6;令y=0,得到x=3,

则A(0,6),B(3,0);(2)当=2时,直线l2:令y=0,得到x=-1,∴D(-1,0)∴BD=4由解得:∴点E坐标为(1,4)∴4=8(3)①若直线l1,l2与轴不能围成三角形,则直线l2与l1平行或直线l2经过点B,当直线l2与l1平行,k=-2,当直线l2经过点B时,=0,则=-∴k=-2或-②当k=-2时,直线l2的解析式为:,∵点P(a,b)在直线l2上,∴b=-2a+2∴=a-2a+2=2-a∵点P(a,b)在第一象限∴解得:0∴12-a,即1当k=-时,直线l2的解析式为:,∵点P(a,b)在直线l2上,∴b=a+2∴=a-a+2=a+2∵点P(a,b)在第一象限∴解得:0∴2a+2,即2综上所述:的取值范围为:1或2【点睛】本题是一次函数的综合题,考查了两条直线的交点坐标,三角形的面积公式,两直线平行的性质,解不等式组等知识,熟练掌握相关知识是解题的关键.22、(1)二、三这两个月的月平均增长率为25%;(2)当商品降价5元时,商品获利4250元.【解析】

(1)设二三月份的平均增长率为x,由题意可得,二月份的销售量为256(1+x)件;三月份的销售量为256(1+x)2件,又知三月份的销售量为400件,由此列出方程,解方程求出x的值,即求出了平均增长率;(2)设降价y元时销售商品获利为4250元,利用每件商品的利润×销售量=4250,列方程,解方程即可解决.【详解】解:(1)解:设二三月份的平均增长率为x,则有:256(1+x)2=400,解得:x1=0.25,x2=-2.25(舍).答:二三这两个月的月平均增长率为25%;(2)设降价y元时销售商品获利为4250元,则有:(40-25-y)(400+5y)=4250,解得:x1=-70(舍),x2=5.答:商品降价5元时,商品获利4250元.【点睛】本题主要考查了一元二次方程的应用——增长率问题和销售问题,解决本题的关键根据等量关系准确的列出方程.23、(1)P(﹣4,6);(2);(3)【解析】

(1)利用∠PAO=∠POA得出PA=PO,进而得出AE=EO=4,即可得出P点坐标;(2)首先得出Rt△OCQ≌Rt△OC'Q(HL),进而利用平行线的性质求出∠POQ=∠PQO,即可得出BP=PO,再利用勾股定理得出PQ的长,进而求出△OPQ的面积;(3)先构造一组手拉手的相似三角形,将CM的长转化为,然后通过垂线段最短及全等三角形求解即可.【详解】解:如图1,过点P作PE⊥AO于点E,∵,∴AO=8,∵∠PAO=∠POA∴PA=PO,∵PE⊥AO,∴AE=EO=4,∴P(﹣4,6);(2)如图2,在Rt△OCQ和Rt△OC'Q中,,∴Rt△OCQ≌Rt△OC'Q(HL),∴∠OQC=∠OQC',又∵OP∥C'Q,∵∠POQ=∠OQC',∴∠POQ=∠PQO,∴PO=PQ,∵点P为BQ的中点,∴BP=QP,∴设BP=OP=x,在Rt△OPC中,OP2=PC2+OC2,∴x2=(8﹣x)2+62,解得:x=.故S△OPQ=×CO×PQ=×6×=.(3)如图3,连接CM、AC,在AC的右侧以AC为腰,∠ACG为直角作等腰直角三角形ACG,连接QG,∵△AMQ与△ACG为等腰直角三角形,∴,∠MAQ=∠CAG=45°,∴,∠MAC=∠QAG∴△MAC∽△QAC,∴,∴,∵点Q在直线BC上,∴当GQ⊥BC时,GQ取得最小值,如图3,作GH⊥BC,则GQ的最小值为线段GH的长,∵∠ACG=∠B=90°,∴∠ACB+∠GCH=∠ACB+∠BAC=90°,∴∠GCH=∠BAC,又∵∠B=∠GHC=90°,AC=CG,∴△ABC≌△CHG(AAS)∴GH=BC=8∴GQ的最小值为8,∴CM的最小值为.【点睛】此题主要考查了矩形的判定与性质以及全等三角形的判定与性质、勾股定理、三角形面积求法等知识,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论