版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省平顶山市鲁山县数学八年级下册期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列图形,可以看作中心对称图形的是()A. B. C. D.2.已知点M(1-a,a+2)在第二象限,则a的取值范围是()A.a>-2 B.-2<a<1 C.a<-2 D.a>13.当时,化为最简二次根式的结果是()A. B. C. D.4.要使二次根式有意义,则的取值范围是()A. B. C. D.5.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.6.若分式有意义,则实数的取值范围是()A.x=2 B.x=-2 C.x≠2 D.x≠-27.将直线向下平移个单位长度得到新直线,则的值为()A. B. C. D.8.如图是小王早晨出门散步时,离家的距离s与时间t之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是()A. B. C. D.9.如图,在已知的△ABC中,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径作弧,两弧相交于两点EF;②作直线EF交BC于点D连接AD.若AD=AC,∠C=40°,则∠BAC的度数是()A.105° B.110° C.I15° D.120°10.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)11.如图,在正方形ABCD的外侧,以AD为边作等边△ADE,连接BE,则∠AEB的度数为()A.15° B.20° C.25° D.30°12.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,梯形中,,点分别是的中点.已知两底之差是6,两腰之和是12,则的周长是____.14.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步先假设所求证的结论不成立,即问题表述为______.15.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为______.16.计算:(+2)2017(-2)2018=__________.17.在菱形ABCD中,对角线AC=30,BD=60,则菱形ABCD的面积为____________.18.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.三、解答题(共78分)19.(8分)一个工程队修一条3000米的公路,由于开始施工时增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?20.(8分)如图1,□ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的□A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.21.(8分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出消费金额的中位数;(3)该班这一天平均每人消费多少元?22.(10分)如图,矩形中,,,为上一点,将沿翻折至,与相交于点,与相交于点,且.(1)求证:;(2)求的长度.23.(10分)已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(2,4),反比例函数y=mx的图象经过AB的中点D,且与BC交于点E,顺次连接O,D,E(1)求反比例函数y=mx(2)y轴上是否存在点M,使得△MBO的面积等于△ODE的面积,若存在,请求出点M的坐标;若不存在,请说明理由;(3)点P为x轴上一点,点Q为反比例函数y=mx图象上一点,是否存在点P,点Q,使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q24.(10分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.25.(12分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣1,1),C(﹣1,3).(1)将△ABC先向下平移6个单位长度,再向右平移5个单位长度,得到△A1B1C1,画出△A1B1C1,并写出点A的对应点A1的坐标;(1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,画出△A1B1C1.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】、不是中心对称图形,故本选项不符合题意;、是中心对称图形,故本选项符合题意;、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意.故选:.【点睛】本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【解析】因为点M(1−a,a+2)在第二象限,∴1−a<0,解得:a>1,故选D.3、B【解析】
直接利用二次根式的性质结合a,b的符号化简求出答案.【详解】解:当a<0,b<0时,故选:B.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.4、D【解析】
根据二次根式有意义的条件进行求解即可.【详解】∵二次根式有意义∴解得故答案为:D.【点睛】本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.5、D【解析】
根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【解析】
根据分式有意义分母不能为零即可解答.【详解】∵分式有意义,∴x+2≠0,∴x≠-2.故选:D.【点睛】本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.7、D【解析】
直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,解得n=1.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、D【解析】
分析图象,可知该图象是路程与时间的关系,先离家逐渐变远,然后距离不变,在逐渐变近,据此进行判断即可得.【详解】通过分析图象和题意可知,行走规律是:离家逐渐远去,离家距离不变,离家距离逐渐近,所以小王散步行走的路线可能是故选D.【点睛】本题考查了函数的图象,根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论是解题的关键.9、D【解析】
利用基本作图得到EF垂直平分AB,根据垂直平分线的性质可得DA=DB,根据等腰三角形的性质可得∠B=∠DAB,然后利用等腰三角形的性质可得∠ADC=40°,根据三角形外角性质可得∠B=20°,根据三角形内角和定理即可得答案.【详解】由作法得EF垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD=AC,∠C=40°,∴∠ADC=∠C=40°,∵∠ADC=∠B+∠DAB,∴∠B=∠ADC=20°,∴∠BAC=180°-∠B-∠C=120°.故选:D.【点睛】本题考查的是基本尺规作图和线段垂直平分线的性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等的性质是解题的关键.10、C【解析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.11、A【解析】
根据△ADE为等边三角形,即可得出AE=AD,则AE=AB,由此可以判断△ABE为等腰三角形.△ADE为等边三角形,则∠DAE=60°,由此可以得出∠BAE=150°,根据△ABE为等腰三角形,即可得出∠AEB的度数.【详解】∵△ADE为等边三角形,∴AE=AD、∠DAE=60°,∵四边形ABCD为正方形,则AB=AD,∴AE=AB,则△ABE为等腰三角形,∴∠AEB=∠ABE====15°,则答案为A.【点睛】解决本题的关键在于得出△ABE为等腰三角形,再根据等腰三角的性质得出∠AEB的读数.12、B【解析】
首先根据题意列出表格,然后由表格求得所有等可能的结果与从中摸出两个球都是绿球的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∵共有20种等可能的结果,从中摸出两个球都是绿球的有6种情况,
∴从中摸出两个球都是绿球的概率是:.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、1.【解析】
延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【详解】连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC-DK)=(DC-AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=1.故答案为:1.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.14、假设在直角三角形中,两个锐角都大于45°.【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.【详解】∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.【点睛】此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.15、.【解析】
解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,∵A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,∵菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB·CE′=8,∴CE′=2,由此求出CE的长=2.故答案为2.考点:1、轴对称﹣最短问题,2、菱形的性质16、2【解析】
根据同底数幂的乘法得到原式,再根据积的乘方得到原式,然后利用平方差公式计算.【详解】原式
.
故答案为.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了整式的运算.17、1【解析】
根据菱形的面积等于对角线积的一半,即可求得答案.【详解】解:∵在菱形ABCD中,对角线AC=30,BD=60,
∴菱形ABCD的面积为:12AC•BD=1.
故答案为:1【点睛】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.18、1:1【解析】试题分析:当AB:AD=1:1时,四边形MENF是正方形,理由是:∵AB:AD=1:1,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:1时,四边形MENF是正方形,故答案为:1:1.点睛:本题考查了矩形的性质、正方形的判定、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.三、解答题(共78分)19、实际每天修路1米.【解析】
首先设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意可得等量关系:原来修3000米的时间-实际修3000米的时间=2天,根据等量关系列出方程即可.【详解】设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意得:-=2,解得:x=500,经检验,x=500是原分式方程的解,∴(1+50%)x=(1+50%)×500=1.答:实际每天修路1米.【点睛】本题考查的知识点是分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.20、(1)▱A′B′CD如图所示见解析,A′(2,2t);(2)t=3;(3)m=1.【解析】
(1)根据题意逐步画出图形.(2)根据三角形的面积计算方式进行作答.(3)根据平移的相关性质进行作答.【详解】(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(4,t),A(2,0),∵S△OA′C=10t﹣×2×2t﹣×6×t﹣×4×t=2.∴t=3.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=1.【点睛】本题主要考查了三角形的面积计算方式及平移的相关性质,熟练掌握三角形的面积计算方式及平移的相关性质是本题解题关键.21、(1)50;(2)图详见解析,12.5;(3)该班这一天平均每人消费13.1元.【解析】
(1)根据C类有14人,占28%,即可求得该班的总人数;(2)根据(1)中的答案可以求得消费10元的人数,从而可以将条形统计图补充完整,进而求得消费金额的中位数;(3)根据加权平均数的计算方法可以求得该班这一天平均每人消费的金额.【详解】(1)由题意可得,该班的总人数为:14÷28%=50,即该班的总人数是50;(2)消费10元的有:50-9-14-7-4=16(人),补充完整的统计图如图所示,消费金额的中位数是:=12.5;(3)由题意可得,该班这一天平均每人消费:=13.1(元),即该班这一天平均每人消费13.1元.【点睛】本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22、(1)详见解析;(2).【解析】
(1)利用全等三角形的性质证明OD=OE,OG=OP,推出DG=PE即可解决问题.
(2)设AP=EP=x,则PD=GE=6-x,DG=x,可得CG=8-x,BG=8-(6-x)=2+x,在△BCG中根据勾股定理得:BC2+CG2=BG2,构建方程即可解决问题.【详解】(1)证明:四边形是矩形,,根据题意得:,,,,在和中,,,,,,即,;(2)如图所示,由(1)得:,,又,设,则,,,,在中根据勾股定理得:,即,解得:,.故答案为:(1)详见解析;(2).【点睛】本题考查矩形与翻折变换,全等三角形的判定和性质,勾股定理,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题.23、(1)y=4x;(2)M(0,3)或(0,﹣3);(3)存在;以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(23,【解析】
(1)根据矩形的性质以及点B为(2,4),求得D的坐标,代入反比例函数y=mx中,即可求得m的值,即可得;
(2)依据D、E的坐标联立方程,应用待定系数法即可求得直线DE的解析式,然后△DOE面积即可求,再利用△MBO的面积等于△ODE的面积,即可解出m的值,从而得到M点坐标;
(3)根据题意列出方程,解方程即可求得Q【详解】(1)∵四边形OABC为矩形,点B为(2,4),∴AB=2,BC=4,∵D是AB的中点,∴D(1,4),∵反比例函数y=mx图象经过AB的中点D∴4=m1,m∴反比例函数为y=4x(2)∵D(1,4),E(2,2),设直线DE的解析式为y=kx+b,∴k+b=∴直线DE的解析式为y=﹣2x+6,∴直线DE经过(3,0),(0,6),∴△DOE的面积为3×6÷2﹣6×1÷2﹣3×2÷2=3;设M(0,m),∴S△AOM=12OM×|xB|=|m|∵△MBO的面积等于△ODE的面积,∴|m|=3,∴m=±3,∴M(0,3)或(0,﹣3);(3)存在;理由:令x=2,则y=2,∴E的坐标(2,2),∵D(1,4),以P、Q、D、E为顶点的四边形为平行四边形,当DE是平行四边形的边时,则PQ∥DE,且PQ=DE,∴P的纵坐标为0,∴Q的纵坐标为±2,令y=2,则2=4x,解得x令y=﹣2,则﹣2=4x,解得x∴Q点的坐标为(﹣2,﹣2);当DE是平行四边形的对角线时,∵D(1,4),E(2,2),∴DE的中点为(32设Q(a,4a)、P(x∴4a÷2=3,∴a=23,x=∴P(23故使得以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(23【点睛】本题考查的知识点是反比例函数的综合运用,解题关键是利用反比例函数的性质作答.24、(1)AB=2;(1)证明见解析.【解析】
(1)设BM=x,则CM=1x,BC=BA=3x;在Rt△ABM中,E为斜边AM中点,根据直角三角形斜边的中线等于斜边的一半可得AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即可得30=x1+9x1,解得x=1.所以AB=3x=2;(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.证明△ABF≌△ADH,根据全等三角形的性质可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.【详解】解:(1)设BM=x,则CM=1x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即30=x1+9x1,解得x=1.∴AB=3x=2.(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠1.∵DE=DA,DP⊥AF∴∠3=∠3.∵∠1+∠1+∠3+∠3=90°,∴∠1+∠3=35°.∴∠DFP=90°﹣35°=35°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△FAH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑师聘用协议书模板
- 标准劳动合同解除协议书参考样本
- 标准房屋出租正式协议
- 员工录用合同样本
- 长沙市二手车买卖合同简化版
- 商品房购销合同范本修订对比
- 商铺意向租赁合同协议
- 实训基地实习协议
- 屋顶防水修整合同
- 2024年外墙真石漆班组分包合同
- 高中生物-特异性免疫(一)教学课件设计
- 英语演讲技巧与实训学习通课后章节答案期末考试题库2023年
- GB/T 42631-2023近岸海洋生态健康评价指南
- TSG特种设备安全技术规范
- 酒旅餐饮商家直播间通用话术大全10-46-16
- 中国民族民俗:白族三道茶
- 自动扶梯与自动人行道2023版自行检测规则
- TD-T 1044-2014 生产项目土地复垦验收规程
- 违法建筑处置法律解读培训PPT
- 《加氢裂化工艺》加氢裂化技术讲义
- Unit 1 Art 单词默写 高中英语人教版(2019)选择性必修第三册
评论
0/150
提交评论