2024届河北省重点中学数学八年级下册期末检测试题含解析_第1页
2024届河北省重点中学数学八年级下册期末检测试题含解析_第2页
2024届河北省重点中学数学八年级下册期末检测试题含解析_第3页
2024届河北省重点中学数学八年级下册期末检测试题含解析_第4页
2024届河北省重点中学数学八年级下册期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省重点中学数学八年级下册期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.最早记载勾股定理的我国古代数学名著是()A.《九章算术》 B.《周髀算经》 C.《孙子算经》 D.《海岛算经》2.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2 B.3 C. D.3.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.AB∥CD,∠B=∠DC.AB=CD,AD=BC D.AB∥CD,AB=CD4.关于x的一元二次方程有一个根为0,则m的值为()A.3 B.-3 C. D.05.人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示是()米A.0.77×10–6 B.77×10–6 C.7.7×10–6 D.7.7×10–56.已知,则的关系是()A. B. C. D.7.已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为【】A.6cmB.4cmC.3cmD.2cm8.若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是()A.30° B.45° C.60° D.75°9.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个 B.2个 C.3个 D.4个10.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长()A.2 B.3 C.4 D.2.511.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A.40° B.45° C.50° D.55°12.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=1.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是()A.32 B.2 C.52二、填空题(每题4分,共24分)13.如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.14.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,AE=4,BC=8,有下列结论:①DE=4;②S△AED=S四边形ABCD;③DE平分∠ADC;④∠AED=∠ADC.其中正确结论的序号是_____(把所有正确结论的序号都填在横线上)15.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(m,3),AB⊥x轴于点B,平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数解析式是___.16.数据﹣2、﹣1、0、1、2的方差是_____.17.若最简二次根式和是同类二次根式,则m=_____.18.如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)三、解答题(共78分)19.(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.20.(8分)已知x=+1,y=-1,求x2+xy+y2的值.21.(8分)随着人们环保意识的增强,越来越多的人选择低碳出行,各种品牌的山地自行车相继投放市场.顺风车行五月份型车的销售总利润为元,型车的销售总利润为元.且型车的销售数量是型车的倍,已知销售型车比型车每辆可多获利元.(1)求每辆型车和型车的销售利润;(2)若该车行计划一次购进两种型号的自行车共台且全部售出,其中型车的进货数量不超过型车的倍,则该车行购进型车、型车各多少辆,才能使销售总利润最大?最大销售总利润是多少?22.(10分)计算:4(﹣)﹣÷+(+1)1.23.(10分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE(1)求证:△ADE≌△CBF.(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF为菱形,并说明理由.24.(10分)如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形.(2)已知BE=2cm,DF=3cm,求EF的长.25.(12分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?26.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】

由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.【详解】最早记载勾股定理的我国古代数学名著是《周髀算经》,故选:B.【点睛】考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.2、A【解析】

如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.【详解】解:如图,延长FD到G,使DG=BE,连接CG、EF∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF与△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故选A.【点睛】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.3、A【解析】

根据平行四边形的判定定理分别进行分析即可.【详解】解:A.不能判定四边形ABCD是平行四边形,四边形可能是等腰梯形,故此选项符合题意;B.AB∥CD,可得∠A+∠D=180°,因为∠B=∠D,∠A+∠B=180°,所以AD∥BC,根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;

C.根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;D.根据一组对边平行且相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;

故选:A.【点睛】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4、B【解析】

把x=1代入方程中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为1.【详解】把x=1代入方程中,得m2−9=1,解得m=−3或3,当m=3时,原方程二次项系数m−3=1,舍去,故选:B.【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.5、C【解析】分析:对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).详解:0.0000077=7.7×10–6.故选C.点睛:本题考查了负整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.6、D【解析】

将a进行分母有理化,比较a与b即可.【详解】∵,,∴.故选D.【点睛】此题考查了分母有理化,分母有理化时正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.7、C【解析】∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,∵OE∥DC,∴OE是△BCD的中位线。∴OE=CD=3cm。故选C。8、B【解析】

根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.【详解】设较小的角为x,较大的是3x,x+3x=180,x=45°.故选B.【点睛】本题考查平行四边形的性质,比较简单.9、C【解析】

仔细分析图象特征,根据横轴和纵轴的意义依次分析各小题即可作出判断.【详解】解:由图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点睛】本题考查实际问题的函数图象.实际问题的函数图象是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.10、A【解析】

根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.【详解】解:∵四边形ABCD是平行四边形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故选A.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.11、A【解析】解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.12、A【解析】

作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,首先利用旋转的性质证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,即可求出三角形ADE的面积.【详解】解:如图所示,作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=3,BC=1,∴CG=BC-AD=1-3=1,∴EF=1,∴△ADE的面积是12故选A.【点睛】本题考查了梯形的性质、旋转的性质和全等三角形的判定与性质,对于旋转来说,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①旋转中心;②旋转方向;③旋转角度.本题证明△DCG与△DEF全等正是充分运用了旋转的性质.二、填空题(每题4分,共24分)13、1【解析】

根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.14、①②③【解析】

利用平行四边形的性质结合勾股定理以及三角形面积求法分别分析得出答案.【详解】解:①∵在▱ABCD中,AE⊥BC,垂足为E,AE=4,BC=8,∴AD=8,∠EAD=90°,∴DE==,故此选项正确;②∵S△AED=AE•ADS四边形ABCD=AE×AD,∴S△AED=S四边形ABCD,故此选项正确;③∵AD∥BC,∴∠ADE=∠DEC,∵AB=5,AE=4,∠AEB=90°,∴BE=3,∵BC=8,∴EC=CD=5,∴∠CED=∠CDE,∴∠ADE=∠CDE,∴DE平分∠ADC,故此选项正确;④当∠AED=∠ADC时,由③可得∠AED=∠EDC,故AE∥DC,与已知AB∥DC矛盾,故此选项错误.故答案为:①②③.【点睛】此题主要考查了平行四边形的性质以及勾股定理、三角形面积求法等知识,正确应用平行四边形的性质是解题关键.15、y=x﹣1.【解析】

可以先求出点A的坐标,进而知道直线平移的距离,得出点B的坐标,平移前后的k相同,设出平移后的关系式,把点B的坐标代入即可.【详解】∵点A(m,1)在反比例函数y=的图象,∴1=,即:m=2,∴A(2,1)、B(2,0)点A在y=kx上,∴k=∴y=x∵将直线y=x平移2个单位得到直线l,∴k相等设直线l的关系式为:y=x+b,把点B(2,0)代入得:b=﹣1,直线l的函数关系式为:y=x﹣1;故答案为:y=x﹣1.【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k值相等,是解决问题的关键.16、2【解析】

根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【详解】由题意可得,这组数据的平均数是:x==0,∴这组数据的方差是:,故答案为:2.【点睛】此题考查方差,解题关键在于掌握运算法则17、1.【解析】

由最简二次根式的定义可得3m+1=8+2m,解出m即可.【详解】由题意得:3m+1=8+2m,解得:m=1.故答案为1.【点睛】本题主要考查最简二次根式的定义.18、①②④.【解析】

①易证△ABD∽△ADF,结论正确;②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.【详解】解:如图,在线段DE上取点F,使AF=AE,连接AF,则∠AFE=∠AEF,∵AB=AC,∴∠B=∠C,∵∠ADE=∠B=a,∴∠C=∠ADE=a,∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,∴∠DAF=∠CDE,∵∠ADE+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,∴∠DAF=∠BAD,∴△ABD∽△ADF∴,即AD2=AB•AF∴AD2=AB•AE,故①正确;由①可知:,当AD⊥BC时,由勾股定理可得:,∴,∴,即,故②正确;如图2,作AH⊥BC于H,∵AB=AC=5,∴BH=CH=BC=4,∴,∵AD=AD′=,∴DH=D′H=,∴BD=3或BD′=5,CD=5或CD′=3,∵∠B=∠C∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形故③不正确;如图3,AD⊥BC,DE⊥AC,∴∠ADE+∠DAE=∠C+∠DAE=90°,∴∠ADE=∠C=∠B,∴BD=4;如图4,DE⊥BC于D,AH⊥BC于H,∵∠ADE=∠C,∴∠ADH=∠CAH,∴△ADH∽△CAH,∴,即,∴DH=,∴BD=BH+DH=4+==6.1,故④正确;综上所述,正确的结论为:①②④;故答案为:①②④.【点睛】本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.三、解答题(共78分)19、(1)当t=1.5s时,四边形ABQP是平行四边形,理由详见解析;(1)5.4cm1.【解析】

(1)求出和,根据平行四边形的判定得出即可;(1)先求出高AM和ON的长度,再求出和的面积,再求出答案即可.【详解】(1)当时,四边形ABQP是平行四边形,理由如下:∵四边形ABCD是平行四边形∴∴在和中,∴∴,∵∴即∴四边形ABQP是平行四边形故当时,四边形ABQP是平行四边形;(1)过A作于M,过O作于N∵∴在中,由勾股定理得:由三角形的面积公式得:,即∴∵∴∵∴∴在和中,∴∴∵∴的面积为当时,∴的面积为∴故y的值为.【点睛】本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.20、7【解析】

根据二次根式的加减法法则、平方差公式求出x+y、xy,利用完全平方公式把所求的代数式变形,代入计算即可.【详解】∵x=+1,y=-1,∴x+y=(+1)+(-1)=2,xy=(+1)(-1)=1,∴x2+xy+y2=x2+2xy+-xy=-xy=-1=7.故答案为:7.【点睛】本题考查二次根式的化简求值,灵活运用平方差公式是解题的关键.21、(1)每辆A型车的利润为1元,每辆B型车的利润为2元.(2)商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.【解析】

(1)设每台A型车的利润为x元,则每台B型车的利润为(x+50)元,根据题意得×2;(2)设购进A型车a台,这100辆车的销售总利润为y元,据题意得,y=1a+2(100﹣a),即y=﹣50a+200,再由B型车的进货数量不超过A型车的2倍确定a的取值范围,然后可得最大利润.【详解】解:(1)设每台A型车的利润为x元,则每台B型车的利润为(x+50)元,根据题意得×2,解得x=1.经检验,x=1是原方程的解,则x+50=2.答:每辆A型车的利润为1元,每辆B型车的利润为2元.(2)设购进A型车a台,这100辆车的销售总利润为y元,据题意得,y=1a+2(100﹣a),即y=﹣50a+200,100﹣a≤2a,解得a≥33,∵y=﹣50a+200,∴y随a的增大而减小,∵a为正整数,∴当a=34时,y取最大值,此时y=﹣50×34+200=3.即商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.【点睛】根据题意列出分式方程和不等式.理解题意,弄清数量关系是关键.22、1﹣6.【解析】

先根据二次根式的乘除法则和完全平方公式计算,然后合并即可.【详解】原式=4﹣4﹣+3+1+1=1﹣8﹣4+4+1=1﹣6.故答案为:1﹣6.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、(1)证明见解析;(2)BE的长度为时,四边形AECF为菱形.【解析】

(1)由平行四边形的性质可得∠ADE=∠CBF,AD=BC,利用SAS即可证明△ADE≌△CBF;(2)连接AC,设BE=x,AC、EF相交于O,利用勾股定理可求出DE的长,即可用x表示出OE和OB的长,由菱形的性质可得AC⊥EF,即可证明平行四边形ABCD是菱形,可得AB=AD=4,在Rt△AOB和Rt△AOE中,分别利用勾股定理表示出OA2,列方程求出x的值即可得答案.【详解】(1)∵平行四边形ABCD,∴AD//BC,∴∠∠ADE=∠CBF,AD=BC,又∵BF=DE,∴△ADE≌△CBF.(2)BE的长度为时,四边形AECF为菱形.理由如下:连接AC,设BE=x,AC、EF相交于O,∵AE=3,AD=4,∠DAE=90°,∴BF=DE==5,∴OE=,OB=,∵四边形AECF为菱形,∴AC⊥EF,∴平行四边形ABCD是菱形,∴AB=AD=4,在Rt△AOB和Rt△AOE中,OA2=AB2-OB2=AE2-OE2,即42-()2=32-()2,解得:x=.∴BE的长度为时,四边形AECF为菱形.【点睛】本题考查了全等三角形的判定、菱形的判定与性质,根据对角线互相垂直的平行四边形是菱形,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论