




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀区101中学2024年八年级数学第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知a<b,则下列不等式不成立的是()A.a+2<b+2 B.2a<2b C. D.﹣2a>﹣2b2.下列等式成立的是()A. B. C. D.3.下面关于平行四边形的说法中错误的是()A.平行四边形的两条对角线相等B.平行四边形的两条对角线互相平分C.平行四边形的对角相等D.平行四边形的对边相等4.如图,中,,连接,将绕点旋转,当(即)与交于一点,(即)与交于一点时,给出以下结论:①;②;③;④的周长的最小值是.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④5.如图,矩形ABCD中,AB=6,BC=8,E是AD边上一点,连接CE,将△CDE沿CE翻折,点D的对应点是F,连接AF,当△AEF是直角三角形时,AF的值是()A.4 B.2 C.4,2 D.4,5,26.如图,将半径为的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm7.已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()A. B.6 C.13 D.8.如图,将一个矩形纸片ABCD折叠,使C点与A点重合,折痕为EF,若AB=4,BC=8,则BE的长是()A.3 B.4 C.5 D.69.已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<210.如图,在△ABC中,D、E分别是AB、AC的中点,BC=16,F是线段DE上一点,连接AF、CF,DE=4DF,若∠AFC=90°,则AC的长度是()A.6 B.8 C.10 D.1211.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理12.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形二、填空题(每题4分,共24分)13.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为______.14.若关于的两个方程与有一个解相同,则__________.15.已知有两点A(1,y1)、B(-2,y2)都在一次函数16.已知,则______17.如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.18.一个正方形的面积为4,则其对角线的长为________.三、解答题(共78分)19.(8分)(1)已知y﹣2与x成正比例,且x=2时,y=﹣1.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交于点M(1,p)①关于x,y的二元一次方程组的解为;②求直线l1的表达式.20.(8分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)21.(8分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?22.(10分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量q(升)与行驶时间t(小时)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶小时后加油,中途加油升;(2)求加油前油箱余油量q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.23.(10分)暑假期间,商洛剧院举行专场音乐会,成人票每张20元,学生票每张5元,为了吸引广大师生来听音乐会,剧院制定了两种优惠方案:方案一:购买一张成人票赠送一张学生票;方案二:成人票和学生票都打九折.我校现有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为(人),付款总金额为(元),请分别确定两种优惠方案中与的函数关系式;(2)请你结合参加听音乐会的学生人数,计算说明怎样购票花费少?24.(10分)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+1的4分函数为:当x≤4时,y[4]=3x+1;当x>4时,y[4]=-3x-1.(1)如果y=x+1的-1分函数为y[-1],①当x=4时,y[-1]______;当y[-1]=-3时,x=______.②求双曲线y=与y[-1]的图象的交点坐标;(1)如果y=-x+1的0分函数为y[0],正比例函数y=kx(k≠0)与y=-x+1的0分函数y[0]的图象无交点时,直接写出k的取值范围.25.(12分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.求证:AE=DF.26.如图1,已知AB⊥CD,C是AB上一动点,AB=CD(1)在图1中,将BD绕点B逆时针方向旋转90°到BE,若连接DE,则△DBE为等腰直角三角形;若连接AE,试判断AE与BC的数量和位置关系并证明;(2)如图2,F是CD延长线上一点,且DF=BC,直线AF,BD相交于点G,∠AGB的度数是一个固定值吗?若是,请求出它的度数;若不是,请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据不等式的基本性质对各选项进行逐一分析即可.【详解】A、将a<b两边都加上2可得a+2<b+2,此不等式成立;B、将a<b两边都乘以2可得2a<2b,此不等式成立;C、将a<b两边都除以2可得,此选项不等式不成立;D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;故选C.【点睛】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.2、D【解析】
根据二次根式的混合运算法则进行求解即可.【详解】A..与不能合并,故此选项错误;B.,故此选项错误;C.2与不能合并,故此选项错误;D..【点睛】本题主要考查了二次根式的混合运算,熟练掌握运算法则是解题关键.3、A【解析】∵平行四边形的对边相等、对角相等、对角线互相平分,∴B、C、D说法正确;只有矩形的对角线才相等,故A说法错误,故选A.4、B【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】解:∵AB=BC=CD=AD=4,∠A=∠C=60°
∴△ABD,△BCD为等边三角形,
∴∠A=∠BDC=60°,
∵将△BCD绕点B旋转到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°,
故①正确,③错误;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°,
故②正确
∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,
∴当EF最小时,∵△DEF的周长最小.
∵∠EBF=60°,BE=BF,
∴△BEF是等边三角形,
∴EF=BE,
∴当BE⊥AD时,BE长度最小,即EF长度最小,
∵AB=4,∠A=60°,BE⊥AD,∴EB=,∴△DEF的周长最小值为4+,
故④正确,综上所述:①②④说法正确,
故选:B.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.5、C【解析】
当∠AFE=90°时,由∠AFE=∠EFC=90°可知点F在AC上,先依据勾股定理求得AC的长,然后结合条件FC=DC=3,可求得AF的长;当∠AFE=90°,可证明四边形CDEF为正方形,则EF=3,AE=4,最后,依据勾股定理求解即可.【详解】如下图所示:当点F在AC上时.∵AB=3,BC=8,∴AC=1.由翻折的性质可知:∠EFC=∠D=90°,CF=CD=3,∴AF=4.如下图所示:∵∠FED=∠D=∠DCF=90°,∴四边形CDEF为矩形.由翻折的性质可知EF=DE,∴四边形CDEF为正方形.∴DE=EF=3.∴AE=4.∴AF===4.综上所述,AF的长为4或4.故选:C.【点睛】本题主要考查的是翻折的性质,依据题意画出符合题意的图形是解题的关键.6、A【解析】
连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,根据折叠的性质及垂径定理得到AE=BE,再根据勾股定理即可求解.【详解】如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,∵折叠后恰好经过圆心,∴OE=DE,∵半径为4,∴OE=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE==2∴AB=2AE=4故选A.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理的应用.7、D【解析】已知直角三角形的两直角边长分别为5和12,根据勾股定理求得斜边为13,根据直角三角形斜边上的中线等于斜边的一半,得此直角三角形斜边上的中线长为,故选D.8、A【解析】分析:根据翻折变换的性质可得AE=CE,设BE=x,表示出AE,然后在Rt△ABE中,利用勾股定理列方程求解即可.详解:∵矩形纸片ABCD折叠C点与A点重合,∴AE=CE,设BE=x,则AE=8−x,在Rt△ABE中,由勾股定理得,AB2+BE2=AE2,即42+x2=(8−x)2,解得x=3,即BE=3.故选A.点睛:本题考查了翻折变换的性质,主要利用了翻折前后对应线段相等,难点在于利用勾股定理列出方程.9、C【解析】
由一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.【详解】∵一次函数y=(k-2)x+k的图象经过第一、二、四象限,
∴k-2<0且k>0;
∴0<k<2,
故选C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10、D【解析】
由三角形中位线定理得DE=BC,再由DE=4DF,得DF=2,于是EF=6,再根据直角三角形斜边上的中线等于斜边一半的性质即得答案.【详解】解:∵D、E分别是AB、AC的中点,∴DE=BC=,∵DE=4DF,∴4DF=8,∴DF=2,∴EF=6,∵∠AFC=90°,E是AC的中点,∴AC=2EF=12.故选D.【点睛】本题考查了三角形的中位线定理和直角三角形斜边上中线的性质,熟练运用三角形的中位线定理和直角三角形斜边上中线的性质是解题的关键.11、A【解析】
根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形是中心对称图形,不是轴对称图形;对角线相等的平行四边形是矩形;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.【详解】A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B.平行四边形是中心对称图形,不是轴对称图形,原说法错误;C.对角线相等的平行四边形是矩形,原说法错误;D.已知两个直角三角形斜边和直角边对应相等,可以用“HL”定理证明全等,原说法错误.故选A.【点睛】本题考查了中心对称图形、直角三角形全等的判定、矩形的判定、中点四边形,关键是熟练掌握各知识点.12、B【解析】在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.二、填空题(每题4分,共24分)13、24【解析】
由菱形的性质可得AB=5,AC⊥BD,AO=CO,BO=DO=3,由勾股定理可求AO=4,由菱形的面积公式可求解.【详解】解:∵菱形ABCD的周长是20,
∴AB=5,AC⊥BD,AO=CO,BO=DO=3,
∴AO=AB2-BO2=4
∴AC=8,BD=6
∴菱形ABCD的面积=12AC【点睛】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.14、1【解析】
首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.【详解】解:解方程得x1=2,x2=−1,∵x+1≠0,∴x≠−1,把x=2代入中得:,解得:a=1,故答案为1.【点睛】此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.15、y【解析】
利用一次函数的增减性可求得答案.【详解】∵y=−3x+n,∴y随x的增大而减小,∵点A(1,y1)、B(-2,∴y1故答案为:y1【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于掌握函数图象的走势.16、34【解析】∵,∴=,故答案为34.17、【解析】
根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.【详解】解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,因为折痕相互垂直平分,所以四边形是菱形,而菱形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.故答案为:30°或60°.【点睛】本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.18、【解析】
已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.【详解】如图,∵正方形ABCD面积为4,∴正方形ABCD的边长AB==2,根据勾股定理计算BD=.故答案为:.【点睛】本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.三、解答题(共78分)19、(1)①y=﹣4x+2;②x>-;(2)①;②y1=2x+2.【解析】
(1)根据正比例函数的定义即可求解,再列出不等式即可求解;(2)根据一次函数与二元一次方程组的关系即可求解,把两点代入即可求解.【详解】解:(1)①∵y﹣2与x成正比例,设y﹣2=kx,把x=2,y=﹣1代入可得;﹣1﹣2=2k,解得:k=﹣4,∴y=﹣4x+2,②当y<3时,则﹣4x+2<3,解得:x>-;(2)①把点M(1,p)代入y2=﹣2x+1=4,∴关于x、y的二元一次方程组组的解即为直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交的交点M(1,4)的坐标.故答案为:;②b把点M(1,4)和点(﹣2,﹣2)代入直线l1:y1=mx+n,可得:,解得:,所以直线l1的解析式为:y1=2x+2.【点睛】此题主要考查二元一次方程组与一次函数的性质,解题的关键是熟知他们的关系.20、见解析【解析】分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.详解:已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连结AC在ΔABC和ΔCDA中.∵AB=CD,BC=DA,AC=CA,∴ΔABC≌ΔCDA,∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB//CD,AD//BC,∴四边形ABCD是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.21、梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:∵在中,,,∴.∴在中,,∴.∴∴∴梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22、(1)3;24;(2)Q=﹣10t+36(0≤t≤3);(3)油箱中的油是够用的.【解析】试题分析::(1)观察图中数据可知,行驶3小时后油箱剩油6L,加油加至30L;(2)先根据图中数据把每小时用油量求出来,即:(36-6)÷3=10L,再写出函数关系式;(3)先要求出从加油站到景点需行几小时,然后再求需用多少油,便知是否够用.试题解析:(1)从图中可知汽车行驶3h后加油,中途加油24L;(2)根据分析可知Q=-10t+36(0≤t≤3);(3)油箱中的油是够用的.∵200÷80=2.5(小时),需用油10×2.5=25L<30L,∴油箱中的油是够用的.考点:一次函数的应用.23、(1),;(2)①当购买24张票时,两种方案付款一样多,②时,,方案①付款较少,③当时,,方案②付款较少.【解析】
(1)首先根据方案①:付款总金额=购买成人票金额+除去4人后的学生票金额;方案②:付款总金额=(购买成人票金额+购买学生票金额)打折率,列出关于的函数关系式;(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数,再分三种情况讨论.【详解】(1)按方案①可得:按方案②可得:(2)因为,①当时,得,解得,∴当购买24张票时,两种方案付款一样多.②当时,得,解得,∴时,,方案①付款较少.③当时,得,解得,当时,,方案②付款较少.【点睛】本题根据实际问题考查了一次函数的应用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点的取值,再进一步讨论.24、(2)①5,-4或2;②(-2,-2);(2)k≥2【解析】
(2)①先写出函数的-2分函数,代入即可,注意,函数值时-3时分两种情况代入;②先写出函数的-2分函数,分两种情况和双曲线解析式联立求解即可;(2)先写出函数的0分函数,画出图象,根据图象即可求得.【详解】解:(2)①y=x+2的-2分函数为:当x≤-2时,y[-2]=x+2;当x>-2时,y[-2]=-x-2.当x=4时,y[-2]=-4-2=-5,当y[-2]=-3时,如果x≤-2,则有,x+2=-3,∴x=-4,如果x>-2,则有,-x-2=-3,∴x=2,故答案为-5,-4或2;②当y=x+2的-2分函数为y[-2],∴当x≤-2时,y[-2]=x+2①,当x>-2时,y[-2]=-x-2②,∵双曲线y=③,联立①③解得,(舍),∴它们的交点坐标为(-2,-2),联立②③时,方程无解,∴双曲线y=与y[-2]的图象的交点坐标(-2,-2);(2)当y=-x+2的0分函数为y[0],∴当x≤0时,y[0]=-x+2,当x>0时,y[0]=x-2,如图,∵正比例函数y=kx(k≠0)与y=-x+2的0分函数y[0]的图象无交点,∴k≥2.【点睛】本题考查的是函数综合题,主要考查了新定义,函数图象的交点坐标的求法,解本题的关键是理解新定义的基础上借助已学知识解决问题.25、详见解析【解析】
根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE≌△ADF,则可得AE=DF.【详解】证明∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠DAF+∠BAE=90°,又∵DF⊥AP,BE⊥AP,∴∠AEB=∠AFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAF,在△ABE与△ADF中,,∴△ABE≌△ADF(AAS),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医师资格考试中临床动手能力的必要性阐释试题及答案
- 宪法试题简答题及答案
- 母猪护理专项技能考题及答案
- 系统规划与管理师笔试题型的有效分类与应对策略试题及答案
- 探索系统规划与管理师考试试题及答案的奥秘
- 提升自学能力2024年系统规划与管理师考试试题及答案
- 大专电商基础试题及答案
- 医学基础知识考试的多层次学习环境策略试题及答案
- 系统规划与管理师备考期间注意力集中技巧试题及答案
- 系统规划与管理师考试相关资格认证的分析试题及答案
- 液冷数据中心白皮书 2023:数据中心液冷革命解锁未来的数字冰河
- 同等学力申硕英语词汇
- 软件工程导论课件(第六版)(张海潘编著)(1-13章)
- 2023-2024学年广东广州天河区明珠中英文学校数学三上期末联考试题含答案
- 智能仓储管理实战手册
- 提高住院病历完成及时性持续改进(PDCA)
- 气门摇臂轴支座的机械加工工艺及夹具设计毕业设计
- 企业职工代表任命协议书
- 地下管线测绘及数据处理
- 附件1:中国联通动环监控系统B接口技术规范(V3.0)
- 医疗器械经营公司-年度培训计划表
评论
0/150
提交评论