




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安市高新区良庄二中学2024年数学八年级下册期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为()A.3 B.6 C.6或9 D.3或62.在RtABC中,∠C90,AB3,AC2,则BC的值()A. B. C. D.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.44.如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A.点C B.点O C.点E D.点F5.某市一周日最高气温如图所示,则该市这周的日最高气温的众数是()A.25 B.26 C.27 D.286.如图,在中,,,于点,则与的面积之比为()A. B. C. D.7.﹣3x<﹣1的解集是()A.x< B.x<﹣ C.x> D.x>﹣8.下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是()A. B.C. D.9.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,510.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5b=2c=2.5 B.a:b:c=5:12:13C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5二、填空题(每小题3分,共24分)11.已知菱形两条对角线的长分别为4和6,则菱形的边长为______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.14.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.15.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.16.在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.17.如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.18.为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.20.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=12BC,连结CD、EF,那么CD与EF21.(6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.①当0≤x≤3时,求y与x之间的函数关系.②3<x≤12时,求y与x之间的函数关系.③当容器内的水量大于5升时,求时间x的取值范围.22.(8分)如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.23.(8分)已知点P(2,2)在反比例函数y=(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.24.(8分)已知方程组,当m为何值时,x>y?25.(10分)求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:根据题意先画出图形,并写出已知、求证,再证明).26.(10分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.(1)求证:AE=DF.(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.(3)如图3,连接CG.若CG=BC,则AF:FB的值为.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
先把x=1代入方程x2-mx+2m=0求出m得到原方程为x2-9x+18=0,利用因式分解法解方程得到x1=1,x2=6,然后根据等腰三角形三边的关系和等腰三角形的确定等腰△ABC的腰和底边长.【详解】解:把x=1代入方程x2-mx+2m=0得9-1m+2m=0,解得m=9,则原方程化为x2-9x+18=0,(x-1)(x-6)=0,所以x1=1,x2=6,所以等腰△ABC的腰长为6,底边长为1.故选:B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.2、A【解析】
根据勾股定理即可求出.【详解】由勾股定理得,.故选.【点睛】本题考查的是勾股定理,掌握勾股定理是解题的关键.3、C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=1,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=1.∴EP+FP的最小值为1.故选C.考点:菱形的性质;轴对称-最短路线问题4、B【解析】
从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.【详解】解:∵AB=2,BC=4,四边形ABCD是矩形,∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.故选:B.【点睛】本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.5、A【解析】分析:根据众数是一组数据中出现次数最多的那个数求解即可.详解:∵25出现了3次,出现的次数最多,∴周的日最高气温的众数是25.故选A.点睛:本题考查了众数的定义,熟练掌握一组数据中出现次数最多的那个数是众数是解答本题的关键.众数可能没有,可能有1个,也可能有多个.6、A【解析】
易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的面积比等于相似比的平方即可得到正确的结论.【详解】解:∵∴∠BDC=90°,∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:S△BCD:S△BAC=(BD:BC)2=1:4;故选:A.【点睛】此题主要考查的是直角三角形和相似三角形的性质;相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.7、C【解析】试题分析:将不等式﹣3x<﹣1系数化1得,x>.故选C.考点:解一元一次不等式.8、C【解析】
根据中心对称图形的定义:平面内,如果把一个图形绕某一点旋转180后能与原图形重合,这个图形就叫做中心对称图形,即可判断.【详解】解:根据中心对称图形的定义,A.不是中心对称图形;B.不是中心对称图形;C.是中心对称图形,它的对称中心是正方形对角线的交点;D.不是中心对称图形;故选C.【点睛】本题考查中心对称图形的识别,熟记中心对称图形的定义是解题的关键.9、A【解析】
根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【点睛】本题考查(1)、众数;(2)、中位数.10、D【解析】
A.a2+b2=1.52+22=2.52=c2,所以能判断△ABC是直角三角形,故不符合题意;B.a:b:c=5:12:13,52+122=132,所以能判断△ABC是直角三角形,故不符合题意;C.∠A+∠B=∠C,∠A+∠B+∠C=180°,所以∠C=90°,△ABC是直角三角形,故不符合题意;D.∠A:∠B:∠C=3:4:5,3+4≠5,所以△ABC表示直角三角形,故符合题意,故选D.二、填空题(每小题3分,共24分)11、【解析】
根据菱形的性质及勾股定理即可求得菱形的边长.【详解】解:因为菱形的对角线互相垂直平分,
所以对角线的一半为2和3,根据勾股定理可得菱形的边长为故答案为:.【点睛】此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.12、100(1+x)2=179【解析】
由两次涨价的百分比平均每次为x,结合商品原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.【详解】解:∵两次涨价平均每次的百分比为x,∴100(1+x)2=179.故答案为:100(1+x)2=179.【点睛】本题考查了一元二次方程的应用.13、AB=BC(答案不唯一)【解析】试题解析:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC或AC⊥BD.14、1.【解析】
由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.【详解】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=1.故答案是:1.【点睛】本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.15、1【解析】分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.详解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质)在Rt△ADE中,DE=,∴AD1=4,∴AD=AB=1.点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.16、140°【解析】
根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.【详解】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=80°,∴∠A=40°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.故答案为:140°.【点睛】本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.17、6【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.【详解】解:∵BE和CE分别平分∠ABC和∠BCD,∴∠ABE=∠EBC,∠DCE=∠ECB,∵▱ABCD,∴AB∥CD,AB=CD=5,∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,∴△EBC是直角三角形,AD=BC=AE+ED=10根据勾股定理:CE=.故答案为6【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.18、甲【解析】
根据方差的定义,方差越小数据越稳定即可求解.【详解】解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,而1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共66分)19、见解析;【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.20、CD=EF.【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,DE=12BC,然后求出四边形【详解】结论:CD=EF.理由如下:∵D、E分别是边AB、AC的中点,∴DE∥BC,DE=12∵CF=12BC,∴DE=CF,∴四边形DEFC是平行四边形,∴CD=【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定与性质,熟记定理并确定出平行四边形是解题的关键.21、①当0≤x≤3时,y与x之间的函数关系式为y=5x;②;③1<x<1.【解析】
①当0≤x≤3时,设y=mx(m≠0),根据图象当x=3时,y=15求出m即可;②当3<x≤12时,设y=kx+b(k≠0),根据图象过点(3,15)和点(12,0),然后代入求出k和b即可;③根据函数图象的增减性求出x的取值范围即可.【详解】解:①当0≤x≤3时,设y=mx(m≠0),则3m=15,解得m=5,∴当0≤x≤3时,y与x之间的函数关系式为y=5x;②当3<x≤12时,设y=kx+b(k≠0),∵函数图象经过点(3,15),(12,0),∴,解得:,∴当3<x≤12时,y与x之间的函数关系式y=﹣x+20;③当y=5时,由5x=5得,x=1;由﹣x+20=5得,x=1.∴由图象可知,当容器内的水量大于5升时,时间x的取值范围是1<x<1.【点睛】一次函数的解析式及其性质是本题的考点,根据题意读懂图象是解题的关键.22、见解析.【解析】
方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF是平行四边形,然后根据平行四边形的对边相等得出AF=CE;
方法二:先利用“边角边”证明△ADF≌△CBE,再根据全等三角形的对应边相等得出AF=CE.【详解】证明:(证法一):∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,又∵E、F是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.(证法二):∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,∠B=∠D,又∵E、F是AB、CD的中点,∴BE=AB,DF=CD,∴BE=DF,∴△ADF≌△CBE(SAS),∴AF=CE.【点睛】本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法.23、(1)4;(2).【解析】
由p点可以求得函数解析式,即可得k;由函数解析式中x的取值可以得y的取值.【详解】解:∵点在反比例函数的图象上,∴.∵,∴反比例函数在第一象限内单调递减.∵当时,;当时,.∴.故当时,的取值范围为:.【点睛】本题考查了反比例函数的性质,熟悉掌握概念是解决本题的关键.24、.【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.【详解】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.25、见解析【解析】
分别作出AB、AC的垂直平分线,得到点M,N,根据全等三角形的性质、平行四边形的判定和性质证明结论.【详解】如图,点M,N即为所求作的点,已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,求证:MN∥BC,MN=BC证明:延长MN至点D,使得MN=ND,连接CD,在△AMN和△CDN中,,∴△AMN≌△CDN(SAS)∴∠AMN=∠D,AM=CD,∴AM∥CD,即BM∥CD,∵AM=BM=CD,∴四边形BMDC为平行四边形,∴MN∥BC,MD=BC,∵MN=MD,∴MN=BC.【点睛】本题考查的是三角形中位线定理、平行四边形的判定定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.26、(1) 见解析;(2) DG=DP,理由见解析;(3) 1∶1.【解析】
(1)用SAS证△ABE≌△DAF即可;(2)DG=DP,连接GP并延长至点Q,使PQ=PG,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学六年级下册《练习五》具体内容及教学建议
- 长沙医学院《兼并与收购》2023-2024学年第二学期期末试卷
- 手足口病合并肺炎护理
- 山东省日照市岚山区2025届数学五年级第二学期期末达标检测试题含答案
- Web即时通讯系统课程
- 湖南三一工业职业技术学院《物流分析与设施规划》2023-2024学年第二学期期末试卷
- 潍坊护理职业学院《企业文化研究》2023-2024学年第二学期期末试卷
- 常德职业技术学院《化工制图与CAD实验》2023-2024学年第二学期期末试卷
- 西藏民族大学《实验室安全与规范》2023-2024学年第二学期期末试卷
- 广安职业技术学院《教学设计团体操创编理论与实践》2023-2024学年第二学期期末试卷
- 光荣院建设可行性研究报告
- DB32T 5061.1-2025中小学生健康管理技术规范 第1部分:心理健康
- 2025年河南经贸职业学院单招职业技能测试题库完整版
- 糖尿病酮症酸中毒患者的护理查房
- 2025年河南经贸职业学院单招职业技能测试题库往年题考
- 企业电动叉车充电安全管理办法
- 养老服务中心经济效益分析
- 网络周期窃取演变-洞察分析
- 2025年度货车司机招聘广告发布合同3篇
- 基于几类机器学习模型预测肥胖成因的分析比较
- 医疗质量与安全管理和持续改进评价考核标准
评论
0/150
提交评论