辽宁省盘锦地区2024年数学八年级下册期末学业水平测试模拟试题含解析_第1页
辽宁省盘锦地区2024年数学八年级下册期末学业水平测试模拟试题含解析_第2页
辽宁省盘锦地区2024年数学八年级下册期末学业水平测试模拟试题含解析_第3页
辽宁省盘锦地区2024年数学八年级下册期末学业水平测试模拟试题含解析_第4页
辽宁省盘锦地区2024年数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省盘锦地区2024年数学八年级下册期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%2.下列说法正确的是()A.五边形的内角和是720°B.有两边相等的两个直角三角形全等C.若关于的方程有增根,则D.若关于的不等式恰有2个正整数解,则的最大值是43.将下列多项式因式分解,结果中不含因式x-1的是()A.x2-1 B.x2+2x+1 C.x2-2x+1 D.x(x-2)+(2-x)4.如图,在中,对角线与相交于点,是边的中点,连接,若,,则()A.80° B.90° C.100° D.110°5.分式方程的解为().A. B. C. D.6.已知菱形的对角线,的长分别为和,则该菱形面积是().A.; B.; C.; D..7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10008.的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有()A.个 B.个 C.个 D.个9.下列各数中,是不等式的解的是A. B.0 C.1 D.310.已知a<b,则下列不等式不成立的是()A.a+2<b+2 B.2a<2b C. D.﹣2a>﹣2b11.如图,已知平行四边形,,,,点是边上一动点,作于点,作(在右边)且始终保持,连接、,设,则满足()A. B.C. D.12.用配方法解方程,经过配方,得到()A. B. C. D.二、填空题(每题4分,共24分)13.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.14.已知可以被10到20之间某两个整数整除,则这两个数是___________.15.已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.16.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是___________________.它是________命题(填“真”或“假”).17.关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.18.若关于x的一元二次方程有两个不相等的实数根,则非正整数k的值是______.三、解答题(共78分)19.(8分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:七年级八年级平均数85.7_______众数______________方差37.427.8根据上述图表提供的信息,解答下列问题:(1)请你把上面的表格填写完整;(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.20.(8分)(1)请计算一组数据的平均数;(2)一组数据的众数为,请计算这组数据的方差;(3)用适当的方法解方程.21.(8分)计算:()﹣().22.(10分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.(1)问:第一次每本的进货价是多少元?(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?23.(10分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.24.(10分)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图):在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现在计划在休息区内摆放占地面积为31.5平方米“背靠背”休闲椅(如图),并要求休闲椅摆放在东西方向上或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.25.(12分)如图,一次函数y=-12x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2(1)求m的值及l2(2)求得SΔAOC-S(3)一次函数y=kx+1的图象为l3,且l1,l2,l326.如图,在平面直角坐标系中,△ABC的坐标分别为A(﹣3,5),B(﹣4,2),C(﹣1,4)(注:每个方格的边长均为1个单位长度).(1)将△ABC沿着水平方向向右平移6个单位得△A1B1C1,请画出△A1B1C1;(2)作出将△ABC关于O点成中心对称的△A2B2C2,并直接写出的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2、D【解析】

根据多边形内角和定理,全等三角形的判定,分式方程的解,不等式的正整数解分别进行判断即可解答.【详解】五边形的内角和,所以,A错误;B选项所述相等的两边中,可能出现一个直角三角形的直角边和另一个三角形的斜边相等的情形,这种情况下两三角形不全等,所以,B错误;选项C中的方程的增根只能是,且应是整式方程的根,由此可得,.故C错误;故选D.【点睛】此题考查多边形内角和定理,全等三角形的判定,分式方程的解,不等式的正整数解,解题关键在于掌握各性质定理.3、B【解析】

将各选项进行因式分解即可得以选择出正确答案.【详解】A.x2﹣1=(x+1)(x-1);B.x2+2x+1=(x+1)2;C.x2﹣2x+1=(x-1)2;D.x(x﹣2)﹣(x﹣2)=(x-2)(x-1);结果中不含因式x-1的是B;故选B.4、C【解析】

根据平行四边形的性质得到DO=OB,∠ABC=∠ADC=50°,根据三角形中位线定理得到OE∥BC,根据平行线的性质得到∠ACB=∠COE=30°,利用三角形内角和定理计算即可.【详解】解:∵四边形ABCD是平行四边形,

∴DO=OB,∠ABC=∠ADC=50°,

∵DO=OB,DE=EC,

∴OE∥BC,

∴∠ACB=∠COE=30°,

∴∠BAC=180°-50°-30°=100°,

故选:C.【点睛】本题考查的是平行四边形的性质、三角形中位线定理,掌握平行四边形的对角线互相平分是解题的关键.5、C【解析】试题分析:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C.考点:解分式方程.6、B【解析】

根据菱形面积的计算方法即可得出答案【详解】解:∵ABCD为菱形,且对角线长分别为和∴菱形面积为故答案选B【点睛】本题考查菱形面积的特殊算法:对角线乘积的一半,熟练掌握菱形面积算法是解题关键7、D【解析】

根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选:D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.8、C【解析】

判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.【详解】解:由三角形内角和定理可知,①中,,,,能判断是直角三角形,①正确,③中,,,不是直角三角形,③错误;②中化简得即,边b是斜边,由勾股逆定理是直角三角形,②正确;④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.故答案为:C【点睛】本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.9、D【解析】

判断各个选项是否满足不等式的解即可.【详解】满足不等式x>2的值只有3,故选:D.【点睛】本题考查不等式解的求解,关键是明白解的取值范围.10、C【解析】

根据不等式的基本性质对各选项进行逐一分析即可.【详解】A、将a<b两边都加上2可得a+2<b+2,此不等式成立;B、将a<b两边都乘以2可得2a<2b,此不等式成立;C、将a<b两边都除以2可得,此选项不等式不成立;D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;故选C.【点睛】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.11、D【解析】

设PE=x,则PB=x,PF=3x,AP=6-x,由此先判断出,然后可分析出当点P与点B重合时,CF+DF最小;当点P与点A重合时,CF+DF最大.从而求出m的取值范围.【详解】如上图:设PE=x,则PB=x,PF=3x,AP=6-x∵∴由AP、PF的数量关系可知,如上图,作交BC于M,所以点F在AM上.当点P与点B重合时,CF+DF最小.此时可求得如上图,当点P与点A重合时,CF+DF最大.此时可求得∴故选:D【点睛】此题考查几何图形动点问题,判断出,然后可分析出当点P与点B重合时,CF+DF最小;当点P与点A重合时,CF+DF最大是解题关键.12、B【解析】

按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.【详解】x2+3x+1=0,x2+3x=-1,x2+3x+=-1+,,故选B.【点睛】本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.二、填空题(每题4分,共24分)13、①③④【解析】

根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:

①k<0正确;

②a<0,原来的说法错误;

③方程kx+b=x+a的解是x=3,正确;

④当x>3时,y1<y2正确.

故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.14、15和1;【解析】

将利用平方差公式分解因式,根据可以被10到20之间的某两个整数整除,即可得到两因式分别为15和1.【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=1,24-1=15,∴232-1可以被10和20之间的15,1两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.15、【解析】试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,∴b>0,∵y随x的增大而减小,∴k<0,例如y=-x+1(答案不唯一,k<0且b>0即可).考点:一次函数图象与系数的关系.16、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17、k>1【解析】∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,∴△<0,即(﹣1)1﹣4(k﹣1)<0,解得k>1,故答案为k>1.18、-1【解析】

根据判别式的意义及一元二次方程的定义得到,且,然后解不等式即可求得k的范围,从而得出答案.【详解】解:根据题意知,且,解得:且,则非正整数k的值是,故答案为:.【点睛】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.三、解答题(共78分)19、(1)八年级成绩的平均数1.7,七年级成绩的众数为80,八年级成绩的众数为1;(2)八年级团体成绩更好些;(3)七年级实力更强些.【解析】

(1)通过读图即可,即可得知众数,再根据图中数据即可列出求平均数的算式,列式计算即可.(2)根据方差的意义分析即可.(3)分别计算两个年级前两名的总分,得分较高的一个班级实力更强一些.【详解】解:(1)由折线统计图可知:七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;八年级10名选手的成绩分别为:1,97,1,87,1,88,77,87,78,88;八年级平均成绩=(1+97+1+87+1+88+77+87+78+88)=1.7(分),七年级成绩中80分出现的次数最多,所以七年级成绩的众数为80;八年级成绩中1分出现的次数最多,所以八年级成绩的众数为1.(2)由于七、八年级比赛成绩的平均数一样,而八年级的方差小于七年级的方差,方差越小,则其稳定性越强,所以应该是八年级团体成绩更好些;(3)七年级前两名总分为:99+91=190(分),八年级前两名总分为:97+88=11(分),因为190分>11分,所以七年级实力更强些.【点睛】本题考查了折线统计图,此题要求同学们不但要看懂折线统计图,而且还要掌握方差、平均数、众数的运用.20、(1)4;(2);(3)【解析】

(1)根据算数平均数公式求解即可;(2)根据众数的概念求得x的值,然后利用方差公式计算进行即可;(3)用因式分解法解一元二次方程.【详解】解:(1)∴这组数据的平均数为4;(2)由题意可知:x=2∴∴这组数据的方差为;(3)或∴【点睛】本题考查平均数,众数,方差的概念及计算,考查因式分解法解一元二次方程,掌握相关概念和公式,正确计算是解题关键.21、【解析】分析:根据二次根式的运算法则即可求出答案.详解:原式==点睛:本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.22、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.【解析】

(1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;(2)设售价为y元,根据获利不低于4200元,列不等式求解【详解】解:(1)设第一次每本的进货价是x元,由题意得:=1000,解得:x=1.答:第一次每本的进货价是1元;(2)设售价为y元,由题意得,(6000+2000)y﹣12000≥4200,解得:y≥1.2.答:每本售价为1.2元.考点:分式方程的应用;一元一次不等式的应用23、(1)(2)【解析】本题考查了等边三角形的性质和勾股定理.①中,运用等腰三角形的三线合一和勾股定理;②中,根据三角形的面积公式进行计算即可.24、休息区只能摆放张这样的休闲椅.【解析】

先根据正方形的空地面积求出正方形空地的边长,根据儿童游乐场的面积求出儿童游乐场的边长,即可得出休息区东西向和南北向的边长,已知休闲椅的长和宽,利用无理数估算大小的方法,即可知休息区只能摆放几张这样的休闲椅.【详解】如图3:由题得,正方形空地的边长为(米)儿童游乐场的边长为(米)∵(米)∴休息区东西向和南北向的边长分别为米,米∵∴∴休闲椅只能东西方向摆放,且只能摆放一排∵∴∴休闲椅在东西方向上可并列摆放张

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论