2024届广西南宁市青秀区第二中学八年级下册数学期末联考试题含解析_第1页
2024届广西南宁市青秀区第二中学八年级下册数学期末联考试题含解析_第2页
2024届广西南宁市青秀区第二中学八年级下册数学期末联考试题含解析_第3页
2024届广西南宁市青秀区第二中学八年级下册数学期末联考试题含解析_第4页
2024届广西南宁市青秀区第二中学八年级下册数学期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西南宁市青秀区第二中学八年级下册数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.六边形的内角和为()A.720° B.360° C.540° D.180°2.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2 B.4 C.8 D.43.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分4.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠25.有一组数据a=-10,b=0,c=11,d=17,e=17,f=31,若去掉c,下列叙述正确的是()A.只对平均数有影响 B.只对众数有影响C.只对中位数有影响 D.对平均数、中位数都有影响6.用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°7.生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有()A.17人 B.15人 C.13人 D.5人8.若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是()A.x2+y2B.x2-xy+y2C.x2-3xy+y2D.x2+xy+y29.已知反比例函数的图象上有两点A(a-3,2b),B(a,b-2),且a<0,则的取值范围是()A. B. C. D.10.下列根式中是最简二次根式的是A. B. C. D.11.实数的值在()A.0和1之间 B.1和1.5之间C.1.5和2之间 D.2和4之间12.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为_____.14.在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.15.若与最简二次根式是同类二次根式,则__________.16.如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.17.已知:函数,,若,则__________(填“”或“”或“”).18.在菱形中,若,,则菱形的周长为________.三、解答题(共78分)19.(8分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.(1)经过多少时间,△AMN的面积等于矩形ABCD面积的19(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.20.(8分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点,点,①下列四个点,,,中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.21.(8分)已知方程组,当m为何值时,x>y?22.(10分)如图,在矩形中,点为上一点,连接、,.(1)如图1,若,,求的长.(2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.23.(10分)某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?24.(10分)如图,四边形ABCD是边长为的正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)当M点在何处时,AM+BM+CM的值最小,说明理由;并求出AM、BM、CM的值.25.(12分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t秒。(1)填空:直线AB的解析式是_____________________;(2)求t的值,使得直线CD∥AB;(3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。26.某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据多边形内角和公式,即可求出.【详解】根据多边形内角和公式,六边形内角和故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.2、A【解析】

利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OA=OC,∵AC⊥BC,AB=10,∴,∴,∴;故选:A.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.3、B【解析】

根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.4、D【解析】

解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2,故选D.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.5、C【解析】

分别计算出去掉c前后的平均数,中位数和众数,进行比较即可得出答案.【详解】去掉c之前:平均数为:,中位数是,众数是17;去掉c之后:平均数为:,中位数是,众数是17;通过对比发现,去掉c,只对中位数有影响,故选:C.【点睛】本题主要考查平均数,中位数和众数,掌握平均数,中位数和众数的求法是解题的关键.6、B【解析】

根据反证法的第一步是假设结论不成立矩形解答即可.【详解】解:用反证法证明“三角形中至少有一个内角大于或等于”时,第一步应先假设每一个内角都小于,故选:.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.7、D【解析】

频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数.【详解】解:本班O型血的有:50×0.1=5(人),故选:D.【点睛】本题考查了频率与频数,正确理解频率频数的意义是解题的关键.8、D【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.详解:(x+y)3-xy(x+y)=(x+y)[(x+y)2-xy]=(x+y)(x2+xy+y2)=(x+y)·M∴M=x2+xy+y2故选D.点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2=x2+2xy+y2是解题关键.9、C【解析】

由a<0可得a-3<0,再根据反比例函数的图象上有两点A(a-3,2b),B(a,b-2),继而可得2b<0且b-2<0,从而可得b<0,再由2b=,b-2=,得出a=,a=,继而根据a<0,可得,由此结合b<0即可求得答案.【详解】∵a<0,∴a-3<0,∵反比例函数的图象上有两点A(a-3,2b),B(a,b-2),∴2b=,b-2=,∴2b<0且b-2<0,∴b<0,∵2b=,b-2=,∴a-3=,a=,即a=,a=,又a<0,∴,∴-1<b<2,∴-1<b<0,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,解不等式组等知识,熟练掌握相关知识是解题的关键.10、B【解析】

A.=,故此选项错误;B.是最简二次根式,故此选项正确;C.=3,故此选项错误;D.=,故此选项错误;故选B.考点:最简二次根式.11、B【解析】

根据,,即可判断.【详解】解:∵,,,∴实数的值在1和1.5之间,故选:B.【点睛】此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.12、B【解析】

把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选:B.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二、填空题(每题4分,共24分)13、115【解析】

小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:AC1,正方形BCFG的面积为:BC1;在Rt△ABC中,AB1=AC1+BC1,AB=15,则AC1+BC1=115,即正方形ADEC和正方形BCFG的面积和为115.故答案为115.【点睛】本题考查了勾股定理.关键是根据由勾股定理得AB1=AC1+BC1.注意勾股定理应用的前提条件是在直角三角形中.14、【解析】

根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=a=,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=a=,……∴线段AnDn=,故答案为:.【点睛】本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.15、3【解析】

先化简,然后根据同类二次根式的概念进行求解即可.【详解】=2,又与最简二次根式是同类二次根式,所以a=3,故答案为3.【点睛】本题考查了最简二次根式与同类二次根式,熟练掌握相关概念以及求解方法是解题的关键.16、【解析】

过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.【详解】解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:∵四边形OEFG是正方形,∴OE=OG,∠EOG=90°,∴∠GOH+∠EOI=90°,又∵∠OEI+∠EOI=90°,∴∠OEI=∠GOH,在△EOI和△OGH中,,∴△EOI≌△OGH(AAS),∴OH=EI=3,GH=OI=2,∵点G在第二象限,∴点G的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.17、<【解析】

联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.【详解】根据题意联立方程组得,解得,,画函数图象得,所以,当,则<.故答案为:<.【点睛】本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.18、8【解析】

由菱形的,可得∠BAD=∠BCD=60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.【详解】解:如图,∵ABCD为菱形∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点又∵∴∠BAD=∠BCD=60°∴∠BAC=∠BAD=30°在Rt△AOB中,BO=AB,设BO=x,根据勾股定理可得:解得x=1∴AB=2x=2∴菱形周长为8故答案为8【点睛】本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.三、解答题(共78分)19、(1)1秒或2秒,(2)存在,32秒或12【解析】试题分析:(1)设经过x秒后,根据△AMN的面积等于矩形ABCD面积的19,得出方程解方程即可;(2)假设经过t秒时,以A,M试题解析:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的19则有:12(6-2x)x=1解方程,得x1经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,(2)假设经过t秒时,以A,M,由矩形ABCD,可得∠CDA=∠MAN=90因此有AMAN=即t6-2t=3解①,得t=32经检验,t=32或t=125都符合题意,所以动点M,N同时出发后,经过32考点:1.矩形的性质2.相似三角形的判定与性质.20、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.【解析】

(1)①根据画出图形,根据“中心轴对称”的定义即可判断.②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.(2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.【详解】解:(1)如图1中,①∵OA=1,OP1=1,OP1=1,∴P1,P1与点A是“中心轴对称”的,故答案为P1,P1.②如图2中,以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.∵在正方形ABCD中,点A(1,0),点C(2,1),∴点B(1,1),∵点E在射线OB上,∴设点E的坐标是(x,y),则x=y,即点E坐标是(x,x),∵点E与正方形ABCD是“中心轴对称”的,∴当点E与点A对称时,则OE=OA=1,过点E作EH⊥x轴于点H,则OH2+EH2=OE2,∴x2+x2=12,解得x=,∴点E的横坐标xE=,同理可求点:F(,),∵E(,),F(,),∴观察图象可知满足条件的点E的横坐标xE的取值范围:≤xE≤.(2)如图3中,设GK交x轴于P.

当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.根据对称性可知:当-2-2≤b≤-2时,线段MN与四边形GHJK是“中心轴对称”的.综上所述,满足条件的b的取值范围:2≤b≤2+2或-2-2≤b≤-2.【点睛】本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.21、.【解析】

解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.【详解】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.22、(1);(2)见解析【解析】

(1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;(2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.【详解】解:(1)∵矩形,∴又∵∴设,在中,即解得:,(舍)∴∵矩形∴,∴在中,,∴;(2)如答图,延长交的延长线于∵,∴又∵为的中点,∴在和中∴∴,∵,∴∴∴∴【点睛】本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.23、(1)第一次购书每本25元;(2)每本图书的售价至少是1元.【解析】

(1)设第一次购书的进价是x元/本,则第二批每套的进价是(1+20%)x元/本,然后根据题意列出分式方程即可得出结论;(2)设每本图书的售价为y元,然后根据题意列出不等式即可得出结论.【详解】(1)设第一次购书的进价是x元/本,则第二批每套的进价是(1+20%)x元/本,根据题意得:=-10,解得:x=25,经检验,x=25是原分式方程的解.答:第一次购书每本25元.(2)设每本图书的售价为y元,根据题意得:[500÷25+(500÷25+10)]y-500-900≥(500+900)×25%,解得:y≥1.答:每本图书的售价至少是1元.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.24、(1)证明见解析;(2)M点位于BD与CE的交点时,理由见解析;,【解析】

(1)由旋转的性质可知:BN=BM,BA=BE,然后再证明∠NBE=∠MBA,最后依据SAS证明△AMB≌△ENB即可;(2)连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F,先证明∠EBF=30°,从而可求得EF,BC的长,由(1)可知EN=AM,然后证明△BNM为等边三角形,从而可得到BM=MN,则AM+BM+MC=EN+NM+MC≤EC,最后,依据勾股定理求得EC的长即可.【详解】解:(1)由旋转的性质可知:BN=BM,BA=BE.∵△BAE为等边三角形,∴∠EBA=60°.又∵∠MBN=60°,∴∠NBE=∠MBA.在:△AMB和△ENB中,BN=BM,∠NBE=∠MBA,BA=BE,∴△AMB≌△ENB.(2)如图所示:连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F.∵△ABE为等边三角形,ABCD为正方形,∴∠EBA=60°,∠ABC=90°,∴∠EBC=150°.∴∠EBF=30°.∴∴由(1)可知:△AMB≌△ENB,∴EN=AM.又∵BN=BM,∠NBM=60°,∴△BNM为等边三角形.∴BM=MN.∴AM+BM+MC=EN+NM+MC≥EC.∴AM+BM+MC的最小值=EC过点M作MG⊥BC,垂足为G,设BG=MG=x,则NB=x,EN=AM=MC∴∴x=∴【点睛】本题主要考查的是主要考查的是旋转的性质、正方形的性质、全等三角形的性质和判定,找出AM+BM+MC取得最小值的条件是解题的关键.25、【解析】分析:(1)由点A、B的坐标,利用待定系数法求出直线解析式即可;(2)当CD∥AB时,∠CDO=∠ABO,根据tan∠CDO=tan∠ABO列方程求解即可;(3)当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论