版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年浙江省温州市五校八年级数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.4 B.5 C.6 D.72.如图,广场中心的菱形花坛ABCD的周长是40米,∠A=60°,则A,C两点之间的距离为()A.5米 B.5米 C.10米 D.10米3.在1000个数据中,用适当的方法抽取50个作为样本进行统计,频数分布表中54.5~57.5这一组的频数是6,那么它的频率为()A.0.12 B.0.60 C.6 D.124.如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为()A.4 B.3 C.2 D.15.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A.5 B.3 C. D.6.已知,则的值等于()A.6 B.-6 C. D.7.在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③8.下列二次根式中,是最简二次根式的是()A. B. C. D.9.某地开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么所列方程正确的是()A. B.C. D.10.如图,已知点是线段的黄金分割点,且.若表示以为边的正方形面积,表示长为、宽为的矩形面积,则与的大小关系为()A. B. C. D.不能确定11.在平行四边形ABCD中,对角线AC,BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90° B.AC=BDC.AC⊥BD D.∠BAD=∠ADC12.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.0二、填空题(每题4分,共24分)13.若正n边形的内角和等于它的外角和,则边数n为_____.14.若有增根,则m=______15.把二次根式23化成最简二次根式,则23=16.若是正比例函数,则的值为______.17.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据总分,从高到低确定三名应聘者的排名顺序,通过计算,乙的总分是82.5,根据规定,将被录用的是__________.18.若+(x-y+3)2=0,则(x+y)2018=__________.三、解答题(共78分)19.(8分)分解因式:(1);(2)。20.(8分)为加强防汛工作,市工程队准备对长江堤岸一段长为2560米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加调的长度是多少米?21.(8分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________m,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?22.(10分)求证:取任何实数时,关于的方程总有实数根.23.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.24.(10分)如图,为等边三角形,,相交于点,于点,(1)求证:(2)求的度数.25.(12分)如图,在四边形ABCD中,AD∥CB,AC、BD相交于点E,E为BD中点,延长CD到点F,使DF=CD.(1)求证:AE=CE;(2)求证:四边形ABDF为平行四边形;(3)若CD=1,AF=2,∠BEC=2∠F,直接写出四边形ABDF的面积.26.如图,已知某学校A与笔直的公路BD相距3000米,且与该公路上的一个车站D距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据题意列方程组得到k=n-4,由于0<k<2,于是得到0<n-4<2,即可得到结论.【详解】依题意得:,∴k=n-4,∵0<k<2,∴0<n-4<2,∴4<n<6,故选B.【点睛】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.2、D【解析】
设AC与BD交于点O.∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=40÷4=10米∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=10米,OD=OB=5米在Rt△AOB中,根据勾股定理得:OA=5米∴AC=2OA=10米.故选D.3、A【解析】
根据频率=频数÷样本总数解答即可.【详解】用样本估计总体:在频数分布表中,54.5~57.5这一组的频数是6,那么估计总体数据落在54.5~57.5这一组的频率=0.12,故选A.【点睛】本题主要考查频率分布表、频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.4、A【解析】
因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.【详解】解:∵四边形ABCD是矩形∴OC=OA,BD=AC又∵OA=2,∴AC=OA+OC=2OA=4∴BD=AC=4故选:A.【点睛】本题考查矩形的对角线的性质.熟练掌握矩形对角线相等且互相平分是解题的关键.5、D【解析】
根据勾股定理求出斜边的边长,在应用等积法即可求得斜边上的高.【详解】解:设斜边上的高为h,
由勾股定理得,三角形的斜边长=,
则,
解得,h=2.4,
故选D.【点睛】主要考查勾股定理及等积法在求高题中的灵活应用.6、A【解析】由已知可以得到a-b=-4ab,把这个式子代入所要求的式子,化简就得到所求式子的值是6,故选A7、A【解析】
连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,
∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=∠CDF.
在△ADE和△CDF中,∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC-AE=BC-CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵DE=DF,∠GDH=90°,
∴△DEF始终为等腰直角三角形.
∵CE1+CF1=EF1,
∴AE1+BF1=EF1.
∵S四边形CEDF=S△EDC+S△EDF,
∴S四边形CEDF=S△EDC+S△ADE=S△ABC.
∴正确的有①②③④.
故选A.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.8、D【解析】
根据最简二次根式的概念即可求出答案.【详解】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.9、C【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天,∴,故选:C.【点睛】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10、B【解析】
根据黄金分割的概念和正方形的性质知:BC2=AB•AC,变形后求解即可.【详解】∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AB•AC,∴S1=BC2=AB•AC=S2,故选B.【点睛】此题主要是考查了线段的黄金分割点的概念,根据概念表示出三条线段的关系,再结合正方形的面积进行分析计算是解题关键.11、C【解析】
根据平行四边形的性质、矩形的判定定理对各项进行判断分析即可.【详解】A.有一个角为直角的平行四边形是矩形,正确;B.对角线相等的平行四边形是矩形,正确;C.并不能判定平行四边形ABCD为矩形,错误;D.∵四边形ABCD是平行四边形,∠BAD=∠ADC∴∠BAD=∠ADC=90°,根据有一个角为直角的平行四边形是矩形,正确;故答案为:C.【点睛】本题考查了矩形的判定问题,掌握平行四边形的性质、矩形的判定定理是解题的关键.12、A【解析】
分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.【详解】原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.【点睛】理解无解的含义是解题的关键.二、填空题(每题4分,共24分)13、1【解析】
设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.【详解】解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°,解得,n=1.故答案为:1.【点睛】本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.14、-1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-3),得
x-1(x-3)=1-m,
∵方程有增根,
∴最简公分母x-3=0,即增根是x=3,
把x=3代入整式方程,得m=-1.
故答案是:-1.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15、63【解析】
被开方数的分母分子同时乘以3即可.【详解】解:原式=23=故答案为:63【点睛】本题考查化简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进行化简.16、2【解析】
根据正比例函数的定义即可求解.【详解】依题意得a-1=1,解得a=2【点睛】此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.17、乙【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】∵该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,∴甲被淘汰,又∵丙的总分为80×60%+90×30%+73×10%=82.3(分),乙的总分是82.5,∴根据规定,将被录取的是乙,故答案为:乙.【点睛】本题考查了加权平均数的计算.解题的关键是熟练掌握加权平均数的定义.18、1【解析】分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.故答案为:1.点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题(共78分)19、(1);(2).【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式即可.【详解】解:(1)原式(2)原式【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.20、现在每天加固长度为150米【解析】
设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=x米,可由题意列出一个等量关系:完成此段加固工程所需天数将比原计划缩短5天,列出方程,求出结果.【详解】解:设原计划每天加固长度为x米,则现在每天加固长度为1.5x米,,解得,经检验,是此分式方程的解.【点睛】本题考查分式方程的运用,熟练掌握计算法则是解题关键.21、(1)3600,1;(2)①;②1100m【解析】
(1)观察函数图象,可找出小亮行走的总路程及途中休息的时间,再利用速度=路程÷时间可求出小亮休息后继续行走的速度;
(2)①观察图象,找出点的坐标,利用待定系数法即可求出:当50≤x≤80时,y与x的函数关系式②利用小颖到达终点所用的时间=乘坐缆车的总路程÷缆车的平均速度可求出小颖到达终点所用的时间,用其加上50可求出小颖到达终点时小亮所用时间,再利用小亮离缆车终点的路程=小亮休息后继续行走的速度×(到达终点的时间-小颖到达终点时小亮所用时间)即可求出结论.【详解】解:⑴观察函数图象,可知:小亮行走的总路程是3600m,小亮途中休息的时间为:50-30=1(min),故答案为:3600;1.⑵①当时,设y与x的函数关系式为.根据题意,当时,;当,.∴,解得:,所以,与的函数关系式为.②缆车到山顶的路线长为3600÷2=1800(),缆车到达终点所需时间为1800÷180=10().小颖到达缆车终点时,小亮行走的时间为10+50=60().把代入,得y=55×60—800=2.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2=1100()【点睛】本题考查了待定系数法求一次函数解析式以及一次函数的图象,解题的关键是:(1)观察函数图象,找出各数据;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)根据数量关系,列式计算.22、见解析【解析】
由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.【详解】当时,方程为,;当,方程为一元二次方程,,原方程有实数根.综上所述,取任何值时,原方程都有实数根.【点睛】此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.23、(1)75;4;(2)CD=4.【解析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.24、(1)见解析;(2)∠BPQ=60°【解析】
(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;
(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质求得∠BPQ=60°;【详解】(1)证明:∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠C=60°,在△AEB与△CDA中,∴△AEB≌△CDA(SAS);(2)解:由(1)知,△AEB≌△CDA,则∠ABE=∠CAD,
∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,
∴∠BPQ=∠BAD+∠ABD=60°;【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质,在判定三角形全等时,关键是选择恰当的判定条件.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《室性早搏导管消融》课件
- 会博通10单用户版用户操作指引
- 《动物防疫法》考试题库100题(含答案)
- 蜂窝微纳孔、量子单层石墨烯面料技改项目可行性研究报告写作模板-申批备案
- 2025年河北女子职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 专题06 发展与合作-(解析版)
- 2025年昭通卫生职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 《医疗器械法规培训》课件
- 2025年春节消费机遇和备货建议报告
- 中班区域活动计划实施方案五篇
- 安全生产网格员培训
- 小学数学分数四则混合运算300题带答案
- 林下野鸡养殖建设项目可行性研究报告
- 心肺复苏术课件2024新版
- 大型商场招商招租方案(2篇)
- 2024年交管12123学法减分考试题库和答案
- 临床下肢深静脉血栓的预防和护理新进展
- 2024年山东泰安市泰山财金投资集团有限公司招聘笔试参考题库含答案解析
- 英语主语从句省公开课一等奖全国示范课微课金奖课件
- C139客户开发管理模型
- 年度工作总结与计划会议
评论
0/150
提交评论