2024年广东省深圳市龙岗区龙城初级中学八年级下册数学期末复习检测试题含解析_第1页
2024年广东省深圳市龙岗区龙城初级中学八年级下册数学期末复习检测试题含解析_第2页
2024年广东省深圳市龙岗区龙城初级中学八年级下册数学期末复习检测试题含解析_第3页
2024年广东省深圳市龙岗区龙城初级中学八年级下册数学期末复习检测试题含解析_第4页
2024年广东省深圳市龙岗区龙城初级中学八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省深圳市龙岗区龙城初级中学八年级下册数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3 C.3:3:4:4 D.3:4:3:42.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182 B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)²=1823.如图,在4×4的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则该三角形最长边的长为()A. B.3 C. D.54.如图,矩形中,,,点从点出发,沿向终点匀速运动.设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B.C. D.5.若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90° B.∠B=90°C.∠C=90° D.△ABC是锐角三角形6.已知反比例函数y=1-2mx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则mA.m<0 B.m>0 C.m<12 D.m>7.若x2+mxy+y2是一个完全平方式,则m=()A.2B.1C.±1D.±28.如图,边长为2的菱形ABCD中,∠A=60º,点M是边AB上一点,点N是边BC上一点,且∠ADM=15º,∠MDN=90º,则点B到DN的距离为()A. B. C. D.29.已知点P(3,4)在函数y=mx+1的图象上,则m=()A.-1 B.0 C.1 D.210.下列命题的逆命题成立的是()A.对顶角相等B.菱形的两条对角线互相垂直平分C.全等三角形的对应角相等D.如果两个实数相等,那么它们的绝对值相等11.下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C. D.12.某班体育委员对7位同学定点投篮进行数据统计,每人投10个,投进篮筐的个数依次为:5,6,5,3,6,8,1.则这组数据的平均数和中位数分别是()A.6,6 B.6,8 C.7,6 D.7,8二、填空题(每题4分,共24分)13.一个多边形每个外角都是,则这个多边形是_____边形.14.如果的值为负数,则x的取值范围是_____________.15.一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.16.如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.17.在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.18.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.三、解答题(共78分)19.(8分)在直角坐标系中,正方形OABC的边长为8,连结OB,P为OB的中点.(1)直接写出点B的坐标B(,)(2)点D从B点出发,以每秒1个单位长度的速度在线段BC上向终点C运动,连结PD,作PD⊥PE,交OC于点E,连结DE.设点D的运动时间为秒.①点D在运动过程中,∠PED的大小是否发生变化?如果变化,请说明理由如果不变,求出∠PED的度数②连结PC,当PC将△PDE分成的两部分面积之比为1:2时,求的值.20.(8分)计算:(1)(2).21.(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.22.(10分)如图,在平行四边形中,分别为边长的中点,连结.若,则四边形是什么特殊四边形?请证明你的结论.23.(10分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.24.(10分)解不等式组:(1);(2).25.(12分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级班40名学生读书册数的情况如表读书册数45678人数人6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.26.如图,在的网格中,网格线的公共点称为格点.已知格点、,如图所示线段上存在另外一个格点.(1)建立平面直角坐标系,并标注轴、轴、原点;(2)直接写出线段经过的另外一个格点的坐标:_____;(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点的射线,使(保留画图痕迹),并直接写出点的坐标:_____.

参考答案一、选择题(每题4分,共48分)1、D【解析】分析:根据平行四边形的性质:平行四边形的两组对角分别相等即可判断.详解:根据平行四边形的两组对角分别相等.可知D正确.故选D.点睛:本题考查了平行四边形的性质,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.2、B【解析】

设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产1万个,可列出方程.【详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=1.故选:B.【点睛】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.3、B【解析】

根据风格特点利用勾股定理求出三边长,比较即可得.【详解】AB=,BC=,AC=,<<3,所以中长边的长为3,故选B.【点睛】本题考查了勾股定理的应用,熟练掌握网格的结构特征以及勾股定理的内容是解题的关键.4、A【解析】

当点P在CD上运动时,如下图所示,连接AC,根据平行线之间的距离处处相等,可判断此时不变,且=S△ABC,根据三角形的面积公式即可得出结论.【详解】解:当点P在CD上运动时,如下图所示,连接AC根据平行线之间的距离处处相等,故此时的面积为不变,故可排除C、D此时=S△ABC=,故可排除B故选A.【点睛】此题考查的是函数的图象,掌握函数图象中横纵坐标的意义和平行线之间的距离处处相等是解决此题的关键.5、C【解析】

13,12,5正好是一组勾股数,根据勾股定理的逆定理即可判断△ABC是直角三角形,从而求解.【详解】∵52+122=169,132=169,∴52+122=132,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.故选:C.【点睛】本题主要考查了勾股定理的逆定理,两边的平方和等于第三边的平方,则这个三角形是直角三角形.对于常见的勾股数如:3,4,5或5,12,13等要注意记忆.6、C【解析】

试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>12故选C.考点:反比例函数图象上点的坐标特征.7、D【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2.对照各项系数可知,系数m的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式.考虑本题时要全面,不要漏掉任何一种形式.8、B【解析】

连接BD,作BE⊥DN于E,利用菱形的性质和已知条件证得△ABD和△BCD是等边三角形,从而证得BD=AB=AD=2,∠ADB=∠CDB=60°,进而证得△BDE是等腰直角三角形,解直角三角形即可求得点B到DN的距离.【详解】解:连接BD,作BE⊥DN于E,∵边长为2的菱形ABCD中,∠A=60°,∴△ABD和△BCD是等边三角形,∴BD=AB=AD=2,∠ADB=∠CDB=60°∵∠A=60°,∴∠ADC=180°-60°=120°,∵∠ADM=15°,∠MDN=90°,∴∠CDN=120°-15°-90°=15°,∴∠EDB=60°-15°=45°,∴BE=BD=,∴点B到DN的距离为,故选:B.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形等,作出辅助线,构建等腰直角三角形是解题的关键.9、C【解析】

把点P(3,4)代入函数y=mx+1,求出m的值即可.【详解】点P(3,4)代入函数y=mx+1得,4=3m+1,解得m=1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,比较简单.熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.10、B【解析】

首先写出各个命题的逆命题,再进一步判断真假.【详解】A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、菱形的两条对角线互相垂直平分的逆命题是两条对角线互相垂直平分的四边形的菱形,是真命题;C、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;D、如果两个实数相等,那么它们的绝对值相等的逆命题是如果两个实数的绝对值相等,那么相等,是假命题;故选:B.【点睛】本题考查逆命题的真假性,是易错题.易错易混点:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.11、C【解析】判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.12、A【解析】

根据中位数和平均数的定义求解即可.【详解】解;这组数据的平均数=(5+6+5+3+6+8+1)÷7=6,

把5,6,5,3,6,8,1从小到大排列为:3,5,5,6,6,8,1,

最中间的数是6,

则中位数是6,

故选A.【点睛】本题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数二、填空题(每题4分,共24分)13、十二【解析】

利用任何多边形的外角和是360°即可求出答案.【详解】多边形的外角的个数是360÷30=1,所以多边形的边数是1.故答案为:十二.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.14、.【解析】

根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.【详解】∵,,∴,解得.故答案为【点睛】本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.15、1【解析】

根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.【详解】∵这组数据的中位数和平均数相等,∴(4+5)÷2=(2+4+5+x)÷4,解得:x=1.故答案为:1.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.16、5【解析】【分析】如图,连接AC、A′C,AA′,由矩形的性质和勾股定理求出AC长,由矩形的性质得出E是AC的中点,F是A′C的中点,证出EF是△ACA′的中位线,由三角形中位线定理得出EF=AA′,由等腰直角三角形的性质得出AA′=AC,即可得出结果.【详解】如图,连接AC、A′C,AA′,∵矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,∴∠ACA′=90°,∠ABC=90°,∴AC=,AC=BD=A′C=B′D′,AC与BD互相平分,A′C与B′D′互相平分,∵点E、F分别是BD、B′D′的中点,∴E是AC的中点,F是A′C的中点,∵∠ACA′=90°,∴△ACA′是等腰直角三角形,∴AA′=AC==10,∴EF=AA′=5,故答案为5.【点睛】本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质,三角形的中位线定理,熟练掌握矩形的性质,由三角形的中位线定理求出EF长是解决问题的关键.17、【解析】

根据平行四边形的性质可得到答案.【详解】∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.【点睛】本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.18、1.【解析】

利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.【详解】设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴,解得,∴y=1x+1,将点(a,10)代入解析式,则a=1;故答案为:1.【点睛】此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.三、解答题(共78分)19、(1)8,8;(2)①∠PED的大小不变,∠PED=45°;②t的值为:秒或秒.【解析】

(1)根据正方形的边长为8和正方形的性质写出点B的坐标;

(2)①如图1,作辅助线,证明四边形PMCN是正方形,再证明△DPN≌△EPM(ASA),可得△DPE是等腰直角三角形,可得结论;

②分两种情况:当PC将△PDE分成的两部分面积之比为1:2时,即G是ED的三等分点,根据面积法可知:EC与CD的比为1:2或2:1,列方程可得结论.【详解】解:(1)∵正方形OABC的边长为8,

∴B(8,8);

故答案为:8,8;

(2)①∠PED的大小不变;理由如下:

作PM⊥OC于M,PN⊥CB于N,如图1所示:

∵四边形OABC是正方形,

∴OC⊥BC,

∴∠MCN=∠PMC=∠PNC=90°,

∴四边形PMCN是矩形,

∵P是OB的中点,

∴N、M分别是BC和OC的中点,

∴MC=NC,

∴矩形PMCN是正方形,

∴PM=PN,∠MPN=90°,

∵∠DPE=90°,

∴∠DPN=∠EPM,

∵∠PND=∠PME=90°,

∴△DPN≌△EPM(ASA),

∴PD=PE,∴△DPE是等腰直角三角形,

∴∠PED=45°;

②如图2,作PM⊥OC于M,PN⊥CB于N,

若PC将△PDE的面积分成1:2的两部分,

设PC交DE于点G,则点G为DE的三等分点;

当点D到达中点之前时,如图2所示,CD=8-t,

由△DPN≌△EPM得:ME=DN=4-t,∴EC=CM-ME=4-(4-t)=t,

∵点G为EF的三等分点,

∴或

∵CP平分∠OCB,

∴或2,

即CD=2CE或CE=2CD,

∴8-t=2t或t=2(8-t),

t=或(舍);当点D越过中点N之后,如图3所示,CD=8-t,

由△DPN≌△EPM得:CD=8-t,DN=t-4

∴EC=CM+ME=4+(t-4)=t,

∵点G为EF的三等分点,

∴或

∵CP平分∠OCB,

∴或2,

即CD=2CE或CE=2CD,∴8-t=2t或t=2(8-t),

t=(舍)或;

综上所述,当PC将△PED分成的两部分的面积之比为1:2时,t的值为:秒或秒.【点睛】本题是四边形综合题目,考查了正方形的性质、坐标与图形性质、三角形中位线定理、全等三角形的判定与性质、面积法等知识;本题综合性强,难度适中.20、(1)28﹣10;(2)3a﹣(+3)b.【解析】

(1)利用完全平方公式计算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【详解】(1)原式=3﹣10+25=28﹣10;(2)原式=3a+b﹣2b﹣3b=3a﹣(+3)b.【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则21、(1)详见解析;(2)当t=1或时,△PMB为以BM为腰的等腰三角形.【解析】

(1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;(2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.【详解】解:(1)设点M到BC的距离为h,由S△ABC=S△ABM+S△BCM,即,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t-(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,∴综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.【点睛】此题考查四边形综合题,解题关键在于利用三角形面积公式进行计算22、四边形是菱形,证明详见解析【解析】

根据平行四边形性质得出DC=AB,DC//AB,推出BE=DF,得出平行四边形BFDE,根据直角三角形斜边上中线得出DE=BE,根据菱形的判定推出即可.【详解】解:四边形是菱形.证明:∵四边形是平行四边形,;∵点是的中点,;,∴四边形是平行四边形;又;∴平行四边形是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形斜边上中线等知识点的应用,关键是证出DE=BE和推出平行四边形BEDF.23、(1)见解析;(2)-1.【解析】

(1)根据方程的系数结合根的判别式即可得出△=m2+12≥12,由此即可得出结论.

(2)将x=3代入原方程求出m值,再将m得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.【详解】解:(1)∵在方程x2-mx-3=0中,△=(-m)2-4×1×(-3)=m2+12≥12,

∴对于任意实数m,方程总有两个不相等的实数根.

(2)方法一:将x=3代入x2-mx-3=0中,得:9-3m-3=0,

解得:m=2,

当m=2时,原方程为x2-2x-3=(x+1)(x-3)=0,

解得:x1=-1,x2=3,

∴方程的另一根为-1.

方法二:设方程的另一个根为a,

则3a=-3,

解得:a=-1,

即方程的另一根为-1.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论