




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖南长沙市广益实验中学八年级数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.分式1x+2有意义,xA.x≠2 B.x≠﹣2 C.x=2 D.x=﹣22.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定3.目前,世界上能制造出的最小晶体管的长度只有米,将用科学记数法表示为().A. B. C. D.4.已知一次函数的图象经过第一、三、四象限,则下列结论正确的是()A. B.. C. D.5.如图,在中,,,下列选项正确的是()A. B. C. D.6.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的长度为()A.3 B.4 C.4.8 D.57.如果把分式中的x、y的值都扩大为原来的3倍,那么分式的值()A.不变 B.扩大为原来的3倍C.扩大为原来的6倍 D.扩大为原来的9倍8.用一条直线m将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是()A.甲正确,乙不正确 B.甲不正确,乙正确C.甲、乙都正确 D.甲、乙都不正确9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19610.人体内一种细胞的直径约为0.00000156m,数据0.00000156用科学记数法表示为()A.0.156×10﹣6 B.1.56×10﹣6 C.15.6×10﹣7 D.1.56×10-811.已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为,,则与大小关系为()A. B.C. D.不能确定12.数据2,3,3,5,6,10,13的中位数为()A.5 B.4 C.3 D.6二、填空题(每题4分,共24分)13.将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.14.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.15.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是.16.如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为____________.17.如图,当时,有最大值;当时,随的增大而______.(填“增大”或“减小”)18.从长度为2、3、5、7的四条线段中任意选取三条,这三条线段能够构成三角形的概率是_________三、解答题(共78分)19.(8分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.20.(8分)如图,菱形ABCD中,∠ABC=60°,有一度数为60°的∠MAN绕点A旋转.(1)如图①,若∠MAN的两边AM、AN分别交BC、CD于点E、F,则线段CE、DF的大小关系如何?请证明你的结论.(2)如图②,若∠MAN的两边AM、AN分别交BC、CD的延长线于点E、F,则线段CE、DF还有(1)中的结论吗?请说明你的理由.21.(8分)如图,已知△ABE,AB、AE的垂直平分线m1、m2分别交BE于点C、D,且BC=CD=DE.(1)求证:△ACD是等边三角形;(2)求∠BAE的度数.22.(10分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.(1)求的值.(2)若的面积为.①求点的坐标.②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出符合条件的所有点的坐标.23.(10分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:甲校成绩统计表成绩7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于_______(2)求图②中,“8分”的人数,并请你将该统计图补充完整。(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?24.(10分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.25.(12分)计算(1)()-()(2)(2+3)(2-3)26.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点O成中心对称的△A1B1C1;(2)作出将△A1B1C1向右平移3个单位,再向上平移4个单位后的△A2B2C2;(3)请直接写出点B2关于x轴对称的点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解析】
分式中,分母不为零,所以x+2≠0,所以x≠-2【详解】解:因为1x+2有意义,所以x+2≠0,所以x≠-2,所以选【点睛】本题主要考查分式有意义的条件2、A【解析】因为,,所以甲的成绩比乙的成绩稳定.3、B【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,可得到答案【详解】解:∵∴将用科学记数法表示为故选B【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值4、B【解析】
利用一次函数图象性质,图象经过第一、三、四象限,,即可解答.【详解】一次函数,图象经过第一、三、四象限,则,解得:故选B.【点睛】本题考查了一次函数的图象特征,熟练掌握函数图象所经过象限与k、b之间的关系是解题关键.5、A【解析】
通过证明△ADE∽△ABC,由相似三角形的性质可求解.【详解】解:∵DE∥BC,∴△ADE∽△ABC∴故选:A.【点睛】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.6、D【解析】
已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.7、A【解析】
根据分式的基本性质即可求出答案【详解】解:∵,∴分式的值不变.故选:A.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.8、C【解析】
根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.【详解】如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.故选C.【点睛】此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.9、C【解析】
试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.10、B【解析】
绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000156=1.56×10﹣6.故选B.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成a×10-n的形式,其中1≤a<10,n是正整数,n等于原数中第一个非0数字前面所有011、A【解析】
通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.【详解】甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈0.1.∵2.33>0.1,∴.故选A.【点睛】本题考查了折线统计图、平均数、方差的计算方法和各个统计量的所反映数据的特征,掌握平均数、方差的计算公式是正确解答的前提.12、A【解析】
根据中位数的定义:中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,即可得解.【详解】根据中位数的定义,得5为其中位数,故答案为A.【点睛】此题主要考查中位数的定义,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、【解析】
先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【详解】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.∴矩形的短边与长边的比为1:,故答案为:.【点睛】本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.14、1【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:
95×20%+1×30%+88×50%=1(分).
即小彤这学期的体育成绩为1分.
故答案为:1.【点睛】本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.15、1【解析】试题分析:先由平均数计算出a=4×5-1-3-5-6=4,再计算方差(一般地设n个数据,x1,x1,…xn的平均数为,=(),则方差=[]),=[]=1.考点:平均数,方差16、1【解析】
作辅助线,构建三角形全等,证明Rt△AFM≌Rt△EFN(HL),得∠AFM=∠EFN,再证明△AEF是等边三角形,计算FG=AG=AE,确认当AE⊥BC时,即AE=2时,FG最小.【详解】解:连接AC,过点F作FM⊥AC于,作FN⊥BC于N,连接AF、EF,∵四边形ABCD是菱形,且∠D=60°,∴∠B=∠D=60°,AD∥BC,∴∠FCN=∠D=60°=∠FCM,∴FM=FN,∵FG垂直平分AE,∴AF=EF,∴Rt△AFM≌Rt△EFN(HL),∴∠AFM=∠EFN,∴∠AFE=∠MFN,∵∠FMC=∠FNC=90°,∠MCN=120°,∴∠MFN=60°,∴∠AFE=60°,∴△AEF是等边三角形,∴FG=AG=AE,∴当AE⊥BC时,Rt△ABE中,∠B=60°,∴∠BAE=10°,∵AB=4,∴BE=2,AE=2,∴当AE⊥BC时,即AE=2时,FG最小,最小为1;故答案为1.【点睛】本题考查了菱形的性质,等边三角形的判定,三角形全等的性质和判定,垂线段的性质等知识,本题有难度,证明△AEF是等边三角形是本题的关键.17、增大【解析】
根据函数图像可知,当时,随的增大而增大,即可得到答案.【详解】解:根据题意,∵当时,有最大值;∴函数图像开口向下,∴当时,随的增大而增大;故答案为:增大.【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质进行解题.18、【解析】
三角形的任意两边的和大于第三边,任意两边之差小于第三遍,本题只要把三边代入,看是否满足即可,把满足的个数除以4即可【详解】长度为2、3、5、7的四条线段中任意选取三条共有:2、3、5;2、3、7;3、5、7;2、5、7,共4种情况,能够构成三角形的只有3、5、7这一种,所以概率是【点睛】本题结合三角形三边关系与概率计算知识点,掌握好三角形三边关系是解题关键三、解答题(共78分)19、证明见解析.【解析】
根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,∴△AEG≌△CFH(ASA),∴AG=CH.20、(1)CE=DF,证明见解析;(2)仍然有CE=DF,理由见解析.【解析】
(1)CE=DF;连接AC,易得△ABC、△ACD为正三角形,再根据等边三角形的性质,利用ASA可判定△AEC≌△AFD,即得CE=DF;(2)结论CE=DF仍然成立,同(1)类似证明△ACE≌△ADF,即得结论.【详解】解:(1))CE=DF;证明:如图③,连接AC,在菱形ABCD中,∵∠ABC=60°,∴△ABC、△ACD为正三角形.∵AC=AD,∠ACE=∠ADF=60°,∠CAE=∠DAF=60°-∠CAF,∴△AEC≌△AFD(ASA).∴CE=DF.(2)结论CE=DF仍然成立,如图④,连接AC,在菱形ABCD中,∵∠ABC=60°,∴△ABC、△ACD为正三角形.∵AC=AD,∠ACB=∠ADC=60°,∴∠ACE=∠ADF=120°.∵∠CAE=∠DAF=60°-∠DAE,∴△ACE≌△ADF(ASA).∴CE=DF.【点睛】本题主要考查菱形的性质、等边三角形的判定和性质以及全等三角形的判定与性质的综合应用,解此题的关键是正确添加辅助线,熟知全等三角形判定的方法和等边三角形的性质.21、(1)见解析;(2)120°【解析】
(1)根据线段垂直平分线性质得AC=BC,AD=DE,证AC=CD=AD可得;(2)根据等边三角形性质得∠CAD=∠ACD=∠ADC=60°,根据等腰三角形性质得∠ABC=∠BAC=∠ACD=30°,∠EAD=∠DEA=∠ADC=30°,故∠BAE=∠BAC+∠CAD+∠EAD.【详解】证明:(1)∵AB、AE边上的垂直平分线m1、m2交BE分别为点C、D,∴AC=BC,AD=DE,∴∠B=∠BAC,∠E=∠EAD∵BC=CD=DE,∴AC=CD=AD,∴△ACD是等边三角形.(2)∵△ACD是等边三角形,∴∠CAD=∠ACD=∠ADC=60°,∵AC=BC,AD=DE,∴∠ABC=∠BAC=∠ACD=30°,∠EAD=∠DEA=∠ADC=30°∴∠BAE=∠BAC+∠CAD+∠EAD=120°.【点睛】考核知识点:等边三角形的判定和性质.理解等边三角形的判定和性质是关键.22、(1)4;(2)①点的坐标为.②、、【解析】
(1)利用待定系数法将A点代入,即可求函数解析式的k值;(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.【详解】(1)函数的图象经过点,(2)①如图,设AC与BD交与M,点的横坐标为,点在的图象上,点的坐标为.∵轴,轴,,.∵的面积为,...点的坐标为.②∵C(1,0)∴AC=4当以ACZ作为平行四边形的边时,BE=AC=4∴∴∴、当AC作为平行四边形的对角线时,AC中点为∴BE中点为(1,2)设E(x,y)∵点的坐标为则解得:∴综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、故答案为、、【点睛】本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.23、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.【解析】分析:(1)利用360°减去其它各组对应的圆心角即可求解;(2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;(3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;(4)只要比较每个学校前8名的成绩即可.详解:(1)“7分”所在扇形的圆心角等于360°-90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注会考试心理素质要求试题及答案
- 2025年证券从业资格的重要概念试题及答案
- 2025年注会考试备考的团队合作与分享经验试题及答案
- 2025年证券从业资格证考试应试过程中效率提高的有效途径试题及答案
- 环境微生物对生态系统的影响试题及答案
- 关于费用支付sql笔试题及答案
- 微生物检验数据统计试题及答案
- 财务会计新动态试题及答案
- 畜牧业生物技术在育种中的应用考核试卷
- 2024年项目管理专业人士考试考点剖析试题及答案
- 呼吸科常用吸入药物介绍
- 人行道混凝土专项施工方案
- 《自相矛盾》的说课课件
- 2023年-2024年电子物证专业考试复习题库(含答案)
- 《药品储存与养护技术》 课件全套 第1-8章 药品储运与养护技术- 特殊管理药品的储存与养护
- 室内线路的安装-课件
- 儿科学:21-三体综合征课件
- 水运工程重大事故隐患清单
- 安徽省阜阳市2022-2023学年高二下学期期末教学质量统测历史试题
- 人工智能语言与伦理学习通课后章节答案期末考试题库2023年
- 铜陵恒达新材料科技有限公司《年产5万吨铝锭和5万吨铝棒项目(重新报批)》
评论
0/150
提交评论