版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽亳州市第七中学2024届数学八年级下册期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车在步行了2公里 B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时 D.小强乘公共汽车用了20分钟2.若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.,2 B.3, C., D.3,23.分别以下列三条线段组成的三角形不是直角三角形的是()A.3、4、5 B.6、8、10 C.1、1、 D.6、7、84.已知三角形的周长是1.它的三条中位线围成的三角形的周长是()A.1 B.12 C.8 D.45.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C. D.46.若a+|a|=0,则化简的结果为()A.1 B.−1 C.1−2a D.2a−17.分式方程有增根,则的值为A.0和3 B.1 C.1和 D.38.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9 B.35 C.45 D.无法计算9.若解方程会产生增根,则m等于()A.-10 B.-10或-3 C.-3 D.-10或-410.如图,▱ABCD的周长为32cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.8cm B.24cm C.10cm D.16cm二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.12.若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.13.分解因式_____.14.若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____15.如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是_______.17.一个等腰三角形的周长为12cm,设其底边长为ycm,腰长为xcm,则y与x的函数关系是为_____________________.(不写x的取值范围)18.如图所示,数轴上点A所表示的数为____.三、解答题(共66分)19.(10分)如图,在菱形ABCD中,∠ABC=120°,AB=4,E为对角线AC上的动点(点E不与A,C重合),连接BE,将射线EB绕点E逆时针旋转120°后交射线AD于点F.(1)如图1,当AE=AF时,求∠AEB的度数;(2)如图2,分别过点B,F作EF,BE的平行线,且两直线相交于点G.①试探究四边形BGFE的形状,并求出四边形BGFE的周长的最小值;②连接AG,设CE=x,AG=y,请直接写出y与x之间满足的关系式,不必写出求解过程.20.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.(1)求OD长的取值范围;(2)若∠CBD=30°,求OD的长.21.(6分)如图,在平面直角坐标系中,已知点A(﹣1,3),B(﹣3,1),C(﹣1,1).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(1)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A1B1C1.22.(8分)感知:如图①,在正方形中,是一点,是延长线上一点,且,求证:;拓展:在图①中,若在,且,则成立吗?为什么?运用:如图②在四边形中,,,,是上一点,且,,求的长.23.(8分)如图,反比例函数的图象经过点(1)求该反比例函数的解析式;(2)当时,根据图象请直接写出自变量的取值范围.24.(8分)电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式(2)利用函数关系式,说明电力公司采取的收费标准(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?25.(10分)如图,已知线段AC、BC,利用尺规作一点O,使得点O到点A、B、C的距离均相等.(保留作图痕迹,不写作法)26.(10分)如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)方程组的解是______;(2)当y1>0与y2>0同时成立时,x的取值范围为_____;(3)求△ABC的面积;(4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据函数图象可得:小强从家到公共汽车站步行了2公里;小强在公共汽车站等小明用了10分钟;公共汽车的平均速度是30公里/小时;小强乘公共汽车用了30分钟.则D选项是错误的.考点:一次函数图形的应用.2、C【解析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点P(m,2)与点Q(3,n)关于原点对称,得m=-3,n=-2,故选:C.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、D【解析】
根据勾股定理的逆定理可知,两较短边的平方和等于最长边的平方,逐项验证即可.【详解】A.,可组成直角三角形;B.,可组成直角三角形;C.,可组成直角三角形;D.,不能组成直角三角形.故选D.【点睛】本题考查勾股定理的逆定理,熟练掌握两较短边的平方和等于最长边的平方是解题的关键.4、C【解析】
由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】解:∵三角形的周长是1,∴它的三条中位线围成的三角形的周长是:1×=2.故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.5、D【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选D.【点睛】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.6、C【解析】
根据指数幂的运算法则直接化简即可.【详解】∵a+|a|=0,∴a⩽0.∴=,==1-a-a=1-2a故选:C.【点睛】此题考查根式与分数指数幂的互化及其化简运算,掌握运算法则是解题关键7、D【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.【详解】∵分式方程-1=有增根,∴x﹣1=0,x+1=0,∴x1=1,x1=﹣1.两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,整理得,m=x+1,当x=1时,m=1+1=2;当x=﹣1时,m=﹣1+1=0,当m=0,方程无解,∴m=2.故选D.8、C【解析】【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.【详解】在Rt△ABD和Rt△ADC中,BD2=AB2-AD2,CD2=AC2-AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)=AC2-AB2=1.故选C【点睛】本题考核知识点:勾股定理.解题关键点:灵活运用勾股定理.9、D【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.【详解】去分母得:2x-2-5x-5=m,即-3x-7=m,
由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,
把x=1代入整式方程得:m=-10,把x=-1代入整式方程得:m=-4,
故选:D.【点睛】考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10、D【解析】
根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=32cm,∴AD+DC=16cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=16cm,故选D.【点睛】本题考查了平行四边形的性质,线段垂直平分线的性质,三角形的周长,熟练掌握相关性质定理是解题的关键.二、填空题(每小题3分,共24分)11、(16,8).【解析】
过A、C作AE⊥x轴,CF⊥x轴,根据菱形的性质可得AO=AC=BO=BC=5,再证明△AOE≌△CBF,可得EO=BF,然后可得C点坐标.【详解】解:过A、C作AE⊥x轴,CF⊥x轴,∵点A的坐标是(6,8),∴AO=10,∵四边形AOBC是菱形,∴AO=AC=BO=BC=10,AO∥BC,∴∠AOB=∠CBF,∵AE⊥x轴,CF⊥x轴,∴∠AEO=∠CFO=90°,在△AOE和△CBF中∴△AOE≌△CBF(AAS),∴EO=BF=6,∵BO=10,∴FO=16,∴C(16,8).故答案为:(16,8).【点睛】此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形四边相等.12、【解析】
把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.【详解】∵直线y=kx+3的图象经过点(2,0),∴0=2k+3,解得k=-,则不等式kx+3>0为-x+3>0,解得:x<2,故答案为:x<2.【点睛】本题考查了待定系数法,解一元一次不等式,求出k的值是解题的关键.13、【解析】
提取公因数4,再根据平方差公式求解即可.【详解】故答案为:【点睛】本题考查了因式分解的问题,掌握平方差公式是解题的关键.14、1.2【解析】分析:先由平均数的公式计算出a的值,再根据方差的公式计算即可.详解:∵数据10,9,a,12,9的平均数是10,∴(10+9+a+12+9)÷5=10,解得:a=10,∴这组数据的方差是15[(10−10)²+(9−10)²+(10−10)²+(12−10)²+(9−10)²]=1.2.故选B.点睛:本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15、①②③④【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【详解】∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.【点睛】本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.16、(5,4).【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【详解】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为(5,4).17、y=12-2x【解析】
根据等腰三角形周长公式可求出底边长与腰的函数关系式,【详解】解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:y=12-2x.故答案为:y=12-2x.【点睛】本题考查一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.18、【解析】
首先计算出直角三角形斜边的长,然后再确定点A所表示的数.【详解】∵,∴点A所表示的数1.故答案为:.【点睛】本题考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.三、解答题(共66分)19、(1)45°;(2)①四边形BEFG是菱形,8;②y=(0<x<12)【解析】
(1)利用等腰三角形的性质求出∠AEF即可解决问题.(2)①证明四边形BEFG是菱形,根据垂线段最短,求出BE的最小值即可解决问题.②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.证明△ABG≌△DBE(SAS),推出AG=DE=y,在Rt△CEH中,EH=EC=x.CH=x,推出DH=|4﹣x|,在Rt△DEH中,根据DE2=EH2+DH2,构建方程求解即可.【详解】解:(1)如图1中,∵四边形ABCD是菱形,∴BC∥AD,∠BAC=∠DAC,∴∠ABC+∠BAD=180°,∵∠ABC=120°,∴∠BAD=60°,∴∠EAF=30°,∵AE=AF,∴∠AEF=∠AFE=75°,∵∠BEF=120°,∴∠AEB=120°﹣75°=45°.(2)①如图2中,连接DE.∵AB=AD,∠BAE=∠DAE,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE,∠ABE=∠ADE,∵∠BAF+∠BEF=60°+120°=180°,∴∠ABE+∠AFE=180°,∵∠AFE+∠EFD=180°,∴∠EFD=∠ABE,∴∠EFD=∠ADE,∴EF=ED,∴EF=BE,∵BE∥FG,BG∥EF,∴四边形BEFG是平行四边形,∵EB=EF,∴四边形BEFG是菱形,∴当BE⊥AC时,菱形BEFG的周长最小,此时BE=AB•sin30°=2,∴四边形BGFE的周长的最小值为8.②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴BD=BA,∠ABD=60°,∵BG∥EF,∴∠EBG=180°﹣120°=60°,∴∠ABD=∠GBE,∴∠ABG=∠DBE,∵BG=BE,∴△ABG≌△DBE(SAS),∴AG=DE=y,在Rt△CEH中,EH=EC=x.CH=x,∴DH=|4﹣x|,在Rt△DEH中,∵DE2=EH2+DH2,∴y2=x2+(4﹣x)2,∴y2=x2﹣12x+48,∴y=(0<x<12).【点睛】本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,勾股定理,平行四边形的判定和性质,菱形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.20、(1);(2).【解析】
(1)根据三角形三边关系即可求解;(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.【详解】解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,∴AB=CD=5,BC=AD=1,OD=BD,∴在△ABD中,,∴.(2)过点D作DE⊥BC交BC延长线于点E,∵∠CBD=30°,∴DE=BD,∵四边形ABCD是平行四边形,∴OD=BD=DE,设OD为x,则DE=x,BD=2x,∴BE=,∵BC=1,∴CE=BE-BC=-1,在Rt△CDE中,,解得,,∵BE=>BC=1,∴不合题意,舍∴OD=.故答案为:(1);(2).【点睛】本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.21、(1)作图见解析;(1)作图见解析.【解析】分析:(1)根据中心对称的性质画出△A1B1C1,再写出A1的坐标即可;(1)根据点P、P′的坐标确定出平移规律,再求出A1、B1、C1的坐标,根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可详解:(1)如图,A1的坐标为(1,-3).(1)点睛:本题考查了利用平移变换作图,中心对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键22、(1)见解析;(2)GE=BE+GD成立,理由见解析;(3)【解析】
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即可得到CE=CF;(2)借助(1)的结论得出∠BCE=∠DCF,再通过角的计算得出∠GCF=∠GCE,由SAS可得△ECG≌△FCG,则EG=GF,从而得出GE=DF+GD=BE+GD;(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形),再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理构造方程即可求出DE.【详解】(1)证明:如图①,在正方形ABCD中,BC=CD,∠B=∠ADC=90°,∴∠CDF=90°,即∠B=∠CDF=90°,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴CE=CF;(2)解:如图①,GE=BE+GD成立,理由如下:由(1)得△BCE≌△DCF,∴∠BCE=∠DCF,∴∠ECD+∠ECB=∠ECD+∠FCD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠ECF−∠ECG=45°,则∠GCF=∠GCE,在△GEC和△GFC中,,∴△GEC≌△GFC(SAS),∴EG=GF,∴GE=DF+GD=BE+GD;(3)解:如图②,过C作CG⊥AD于G,∴∠CGA=90°,在四边形ABCD中,AD∥BC,∠A=∠B=90°,∴四边形ABCG为矩形,又∵AB=BC,∴四边形ABCG为正方形,∴AG=BC=AB=16,∵∠DCE=45°,由(1)和(2)的结论可得:ED=BE+DG,设DE=x,∵,∴AE=12,DG=x−4,∴AD=AG−DG=20−x在Rt△AED中,由勾股定理得:DE2=AD2+AE2,即x2=(20−x)2+122解得:,即.【点睛】本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.23、(1)(2)或【解析】
(1)首先设反比例函数解析式为y=,把点(-1,3)代入反比例函数解析式,进而可以算出k的值,进而得到解析式;(2)根据反比例函数图象可直接得到答案.【详解】(1)设反比例函数解析式为,把点代入得:,∴函数解析式为;(2)或.【点睛】此题主要考查了待定系数法求反比例函数解析式,以及利用函数图象求自变量的值,关键是掌握凡是反比例函数图象经过的点必能满足解析式.24、(1)(2)用户月用电量在0度到100度之间时,每度电的收费标准是0.1元,超出100度时,每度电的收费标准是0.80元.(3)用户用电62度时,用户应缴费40.3元,若用户月缴费105元时,该用户该月用了150度电.【解析】试题分析:由图象可知,当0≤x≤100时,可设该正比例函数解析式为y=kx,当x>100时,可设该一次函数解析式为y=kx+b,进而利用待定系数法求出函数表达式;根据图象,月用电量在0度到100度之间时,求出每度电的收费的标准,月用电量超出100度时,求出每度电的收费标准;先根据自变量的值确定出对应的函数表达式,再代入求证即可.试题解析:(1)设当0≤x≤100时,函数解析式为y=kx(k≠0).将(100,1)代入y=kx得:100k=1,解得k=0.1.则y=0.1x(0≤x≤100).设当x>100时,函数解析式为y=ax+b(a≠0).将(100,1),(130,89)代入y=kx+b得:,解得:.则y=0.8x-15(x>100)所以y与x的函数关系式为;(2)根据(1)的函数关系式得:月用电量在0度到100度之间时,每度电的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 同行竞争协议合同范本
- 2025年度企业自驾游租车合同二零二五年度专用3篇
- 2025版建筑起重机械租赁价格体系构建及质量控制合同3篇
- 2025年度个人土地承包权流转保证金合同范本3篇
- 2025年全球及中国高效微粒空气过滤器行业头部企业市场占有率及排名调研报告
- 2025-2030全球阳极氧化再生行业调研及趋势分析报告
- 2024年拉丝工职业技能竞赛理论考试题库(含答案)
- 2025年度个人租赁房屋租赁合同租赁物损坏赔偿条款
- 二零二五年度车库使用权抵押贷款合同4篇
- 2025年度个人旅游保险代理合同6篇
- 2024年安全教育培训试题附完整答案(夺冠系列)
- 神农架研学课程设计
- 文化资本与民族认同建构-洞察分析
- 2025新译林版英语七年级下单词默写表
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 《锡膏培训教材》课件
- 断绝父子关系协议书
- 福建省公路水运工程试验检测费用参考指标
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 自然科学基础(小学教育专业)全套教学课件
- 《工程勘察资质分级标准和工程设计资质分级标准》
评论
0/150
提交评论