河北省石家庄市平山县2024年数学八年级下册期末经典模拟试题含解析_第1页
河北省石家庄市平山县2024年数学八年级下册期末经典模拟试题含解析_第2页
河北省石家庄市平山县2024年数学八年级下册期末经典模拟试题含解析_第3页
河北省石家庄市平山县2024年数学八年级下册期末经典模拟试题含解析_第4页
河北省石家庄市平山县2024年数学八年级下册期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市平山县2024年数学八年级下册期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.242.下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x3.如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为()A.5 B.﹣5 C.10 D.﹣104.如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=2,连接AE、AF,则AE+AF的最小值为()A.25 B.32 C.925.下列各式从左到右,是因式分解的是().A.(y-1)(y+1)=-1 B.C.(x-2)(x-3)=(3-x)(2-x) D.6.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.C.D.7.不等式组的解集在数轴上可表示为()A. B. C. D.8.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1―2x)=256B.256(1+x)2=289C.289(1―x)2=256D.289―289(1―x)―289(1―x)2=2569.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是()A.4和7 B.5和7 C.5和8 D.4和1710.如图,已知,那么添加下列一个条件后,仍然无法判定的是()A. B. C. D.二、填空题(每小题3分,共24分)11.甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)12.根据数量关系:的5倍加上1是正数,可列出不等式:__________.13.正方形的边长为,则这个正方形的对角线长为_________.14.如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.15.如图,有一块矩形纸片ABCD,AB=8,AD=1.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF的长为________16.如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3cm,则AD=________cm.17.已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.18.如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=2,则菱形ABCD的周长是_____。三、解答题(共66分)19.(10分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍.求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:小组甲:设特快列车的平均速度为km/h.时间/h平均速度/(km/h)路程/km高铁列车1400特快列车1400小组乙:高铁列车从甲地到乙地的时间为h.时间/h平均速度/(km/h)路程/km高铁列车1400特快列车1400(1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.20.(6分)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.21.(6分)已知与成正比例,且当时,,则当时,求的值.22.(8分)一只不透明的袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)摸到的球的颜色可能是______;(2)摸到概率最大的球的颜色是______;(3)若将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(黄)、5号球(黄)、6号球(白),那么摸到1~6号球的可能性______(填相同或者不同);(4)若在袋子中再放一些这样的黄球,从中任意摸出1个球,使摸到黄球的概率是,则放入的黄球个数是______.23.(8分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:候选人评委1评委2评委3甲948990乙929094丙918894(1)分别求出甲、乙、丙三人的面试成绩的平均分、、;(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.24.(8分)解不等式组:,并把解集在数轴上表示出来.25.(10分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表,甲10423乙32122请根据上述数据判断,在这5天中,哪台机床出次品的波动较小?并说明理由.26.(10分)某地农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜该地农业部门对2017年的油菜籽的生产成本、市场价格、种植面积和产量等进行了统计,并绘制了如下的统计表与统计图(如图):请根据以上信息解答下列问题:(1)种植每亩油菜所需种子的成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2017年该地全县农民冬种油菜的总获利是多少元?(结果用科学记数法表示).

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由AD//BC可知∠ADE=∠DEC,根据∠ADE=∠EDC得∠DEC=∠EDC,所以DC=EC=5,根据AB=CD,AD=BC即可求出周长.【详解】∵AD//BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠EDC,∴CE=CD=8-3=5,∴▱ABCD的周长是(8+5)2=26,故选C.【点睛】本题考查平行四边形性质,熟练掌握平行四边形的性质是解题关键.2、C【解析】试题分析:一次函数y=kx+b的图象有两种情况:①当k>0时,函数y=kx+b的值随x的值增大而增大;②当k<0时,函数y=kx+b的的值随x的值增大而减小.∵函数y随x的增大而减少,∴k<0,符合条件的只有选项C,故答案选C.考点:一次函数y=kx+b的图象及性质.3、D【解析】

连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,轴,,,而,,,.故选D.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.4、A【解析】

如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小.【详解】解:如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小.

∵AH=EF,AH∥EF,

∴四边形EFHA是平行四边形,

∴EA=FH,

∵FA=FC,

∴AE+AF=FH+CF=CH,

∵四边形ABCD是正方形,

∴AC⊥BD,∵AH∥DB,

∴AC⊥AH,

∴∠CAH=90°,

在Rt△CAH中,CH=AC2+AH2=25,

∴AE+AF的最小值25,【点睛】本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.5、D【解析】

解:A、是多项式乘法,不是因式分解,故本选项错误;B、结果不是积的形式,故本选项错误;C、不是对多项式变形,故本选项错误;D、运用完全平方公式分解x2-4x+4=(x-2)2,正确.故选D.6、C【解析】试题解析:A、∵12+22=5≠32,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵(32)2+(42)2≠(52)2

,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵()2+()2=3=()2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵()2+()2=7≠()2,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选C.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.7、D【解析】

先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组可求得:不等式组的解集是,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.8、C【解析】

试题分析:两次降价后的商品的售价=降价前的商品的售价×(1-平均每次降价的百分率)2.由题意可列方程为.选:C.考点:根据实际问题列方程9、C【解析】分析:如图:因为平行四边形的对角线互相平分,所,,在中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.详解:A、∵,∴不可能;B、∵,∴不可能;C、∵,∴可能;D、,∴不可能;故选C..点睛:本题考查平行四边形的性质以及三角形的三边关系定理.熟练掌握平行四边形的性质和三角形三条边的关系式解答本题的关键.10、A【解析】

先根据∠DAB=∠CAE得出∠DAE=∠BAC,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC.A.∵,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项正确;B.∵,∴△ABC∽△ADE,故本选项错误;C.∵∠B=∠D,∴△ABC∽△ADE,故本选项错误;D.∵∠C=∠AED,∴△ABC∽△ADE,故本选项错误.故选A.【点睛】本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.二、填空题(每小题3分,共24分)11、乙【解析】

根据标准差的意义求解可得.标准差越小,稳定性越好.【详解】解:∵S甲=1.8,S乙=0.1,∴S甲>S乙,∴成绩较稳定的是乙.故答案为:乙.【点睛】本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12、【解析】

问题中的“正数”是关键词语,将它转化为数学符号即可.【详解】题中“x的5倍加上1”表示为:“正数”就是的5倍加上1是正数,可列出不等式:故答案为:.【点睛】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.13、1【解析】

如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.【详解】如图,四边形ABCD是边长为正方形则由勾股定理得:即这个正方形的两条对角线相等,长为1故答案为:1.【点睛】本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.14、6【解析】

根据题意,分析P的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求出AE,即可求解.【详解】根据题意,当P在BC上时,三角形的面积增大,结合图2可得BC=4;当P在CD上时,三角形的面积不变,结合图2可得CD=3;当P在AD上时,三角形的面积变小,结合图2可得AD=5;过D作DE⊥AB于E,∵AB∥CD,AB⊥BC,∴四边形DEBC为矩形,∴EB=CD=3,DE=BC=4,∴AE=∴AB=AE+EB=6.【点睛】此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.15、2【解析】

根据折叠的性质,在第二个图中得到DB=8-1=2,∠EAD=45°;在第三个图中,得到AB=AD-DB=1-2=4,△ABF为等腰直角三角形,然后根据等腰三角形的性质和矩形的性质得到BF=AB=4,再由CF=BC-BF即可求得答案.【详解】∵AB=8,AD=1,纸片折叠,使得AD边落在AB边上(第二个图),∴DB=8-1=2,∠EAD=45°,又∵△AED沿DE向右翻折,AE与BC的交点为F(第三个图),∴AB=AD-DB=1-2=4,△ABF为等腰直角三角形,∴BF=AB=4,∴CF=BC-BF=1-4=2,故答案为:2.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.16、6+【解析】

由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.【详解】解:作AB的垂直平分线,交AC于点E,∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,∴tan30°==,解得:CD=cm,∵BC=3cm,∴BE=6cm,∴CE=3cm,∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.17、对应角相等的三角形全等【解析】

根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【详解】命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,

故其逆命题是对应角相等的三角形是全等三角形.

故答案是:对应角相等的三角形是全等三角形.【点睛】考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.18、【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【详解】解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=1,AC⊥BD,在Rt△AOD中,∴菱形ABCD的周长为.【点睛】本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.三、解答题(共66分)19、(1)见解析;(2)5h.【解析】

(1)根据两车速度之间的关系及时间=路程÷速度(速度=路程÷时间),即可找出表格中空缺的量;

(2)任选一种方法,利用乘高铁列车从甲地到乙地比乘特快列车少用9h(或高铁列车的平均行驶速度是特快列车的2.8倍),即可得出分式方程,解之经检验后即可得出结论.【详解】解:(1)补全表格如下:小组甲:设特快列车的平均速度为km/h.时间/h平均速度/(km/h)路程/km高铁列车1400特快列车1400小组乙:高铁列车从甲地到乙地的时间为h.时间/h平均速度/(km/h)路程/km高铁列车1400特快列车1400(2)选择小组甲:由题可得,,解得,经检验,x是原分式方程的解,符合题意.则.故高铁列车从甲地到乙地的时间为5h.选择小组乙:由题可得,解得,经检验y是原分式方程的解,符合题意.故高铁列车从甲地到乙地的时间为5h.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1)C;(2)(x﹣2)1;(3)(x+1)1.【解析】

(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C;(2)(x2﹣1x+1)(x2﹣1x+7)+9,设x2﹣1x=y,则:原式=(y+1)(y+7)+9=y2+8y+16=(y+1)2=(x2﹣1x+1)2=(x﹣2)1.故答案为:(x﹣2)1;(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)1.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.21、12.【解析】

利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.【详解】设,把代入得,解得,∴,即,当时,.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.22、(1)红、黄、白;(2)红色;(3)相同;(1)1【解析】

(1)根据袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,可知摸到的球的颜色可能是红、黄、白;(2)哪种球的数量最多,摸到那种球的概率就最大;(3)根据概率公式可得答案;(1)设放入的黄球个数是x,根据摸到黄球的概率是,列出关于x的方程,解方程即可.【详解】解:(1)根据题意,可得摸到的球的颜色可能是红、黄、白.故答案为红、黄、白;(2)根据题意,可得摸到概率最大的球的颜色是红色.故答案为红色;(3)∵将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、1号球(黄)、5号球(黄)、6号球(白),∴摸到1~6号球的概率都是,即摸到1~6号球的可能性相同.故答案为相同;(1)设放入的黄球个数是x,根据题意得,=,解得x=1.故答案为1.【点睛】本题考查了概率公式,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.23、:(1)=91分,=92分,=91分;(2)乙将被录用.【解析】

(1)根据算术平均数的含义和求法,分别用三人的面试的总成绩除以3,求出甲、乙、丙三人的面试的平均分、和即可;(2)首先根据加权平均数的含义和求法,分别求出三人的综合成绩各是多少;然后比较大小,判断出谁的综合成绩最高,即可判断出谁将被录用.【详解】解:(1)=(94+89+90)÷3=273÷3=91(分),=(92+90+94)÷3=276÷3=92(分),=(91+88+94)÷3=273÷3=91(分),∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分;(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分),乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分),丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分),∵92.8>92.6>92.2,∴乙将被录用.故答案为(1)=91分,=92分,=91分;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论