2024年顺义区数学八年级下册期末复习检测模拟试题含解析_第1页
2024年顺义区数学八年级下册期末复习检测模拟试题含解析_第2页
2024年顺义区数学八年级下册期末复习检测模拟试题含解析_第3页
2024年顺义区数学八年级下册期末复习检测模拟试题含解析_第4页
2024年顺义区数学八年级下册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年顺义区数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将直线y=-2x-3怎样平移可以得到直线y=-2x的是()A.向上平移2个单位 B.向上平移3个单位C.向下平移2个单位 D.向下平移3个单位2.如图,在平面直角坐标系中,若点在直线与轴正半轴、轴正半轴围成的三角形内部,则的值可能是()A.-3 B.3 C.4 D.53.把一张对边互相平行的纸条,折成如图所示,是折痕,若,则下列结论正确的有是()(1);(2);(3);(4).A.1个 B.2个 C.3个 D.4个4.一次函数的图象与轴、轴分别交于点,,点,分别是,的中点,是上一动点.则周长的最小值为()A.4 B. C. D.5.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定6.如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为()A.(12,12) B.(78,78) C.(66,66) D.(55,55)7.若关于的分式方程的根是正数,则实数的取值范围是().A.,且 B.,且C.,且 D.,且8.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b9.给出下列化简①()2=2:②2;③12;④,其中正确的是()A.①②③④ B.①②③ C.①② D.③④10.如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A. B. C. D.11.下列说法正确的是()A.了解某型导弹杀伤力的情况应使用全面调查B.一组数据3、6、6、7、9的众数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则乙的成绩更稳定12.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时二、填空题(每题4分,共24分)13.已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.14.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据总分,从高到低确定三名应聘者的排名顺序,通过计算,乙的总分是82.5,根据规定,将被录用的是__________.15.计算:的结果是________.16.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.17.如图,在矩形中,沿着对角线翻折能与重合,且与交于点,若,则的面积为__________.18.函数的定义域是__________.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AB=8,BC=6,点P、点E分别是边AB、BC上的动点,连结DP、PE.将

△ADP

△BPE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处.(1)当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于K,求CK的长;(2)当点P运动到某一时刻,若P,A',B'三点恰好在同一直线上,且A'B'=4,试求此时AP的长.20.(8分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.21.(8分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.(1)求反比例函数的解析式;(2)过点作轴的平行线,点在直线上运动,点在轴上运动.①若是以为直角顶点的等腰直角三角形,求的面积;②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)22.(10分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.23.(10分)(1)因式分解:;(2)解方程:24.(10分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?25.(12分)如图,在四边形ABCD中,AD//BC,∠D=90°,E为边BC上一点,且EC=AD,连接(1)求证:四边形AECD是矩形;

(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,26.为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据上加下减,左加右减的平移原则,即可得出答案.【详解】解:根据上加下减的平移原则,直线y=-2x可以看作是由直线y=-2x-3向上平移3个单位得到的;

故选B.【点睛】本题考查一次函数图象与几何变换,属于基础题,关键是掌握上加下减,左加右减的平移原则.2、D【解析】

先根据点4(2.,3)在直线与x轴正半轴、y轴正半轴围成的三角形内部,可知点A(2,3)在直线的下方,即当x=2时,y>3,再将x=2代入,从而得出-1+b>3,即b>4.【详解】解:∵点A(2.3)在直线与x轴正半轴、y轴正半轴围成的三角形内部。∴点A(2,3)在直线的下方,即当x=2时,y>3,又∵当x=2时,∴-1+b>3,即b>4.故选:D.【点睛】本题主要考查了一次函数的性质,根据点A(2.3)在直线与x轴正半轴、y轴正半轴围成的三角形内部,得到点A(2.3)在直线的下方是解题的关键.3、C【解析】

利用平行线的性质,折叠的性质依次判断.【详解】∵A∥B,∴∠EF=,故(1)正确;由翻折得到∠GEF=,∴∠GE=64°,∴∠AEC=180°-∠GE=116°,故(2)错误;∵A∥B,∴∠BGE=∠GE=64°,故(3)正确;∵EC∥FD∴∠BFD=∠BGC=180°-∠BGE=116°,故(4)正确,正确的有3个,故选:C.【点睛】此题考查平行线的性质,翻折的性质,熟记性质定理并熟练运用是解题的关键.4、D【解析】

作C点关于y轴的对称点,连接,与y轴的交点即为所求点P,用勾股定理可求得长度,可得PC+PD的最小值为,再根据CD=2,可得PC+PD+CD=【详解】解:如图,作C点关于y轴的对称点,连接交y轴与点P,此时PC+PD的值最小且∵,分别是,的中点,,∴C(1,0),D(1,2)在Rt△中,由勾股定理可得又∵D(1,2)∴CD=2∴此时周长为PC+PD+CD=故选D【点睛】本题考查最短路径问题,把图形作出来是解题关键,再结合勾股定理解题.5、B【解析】

根据根的判别式判断即可.【详解】∵,∴该方程有两个相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记根的三种情况是解题的关键.6、B【解析】

根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-,),Bn(,)(n为正整数)”,再根据该规律解决问题.【详解】解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-,),Bn(,)(n为正整数).∴B12(,),即(78,78).故选B【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-,),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.7、D【解析】分析:利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.详解:方程两边同乘1(x﹣1)得:m=1(x-1)﹣4(x-1),解得:x=.∵≠1,∴m≠1,由题意得:>0,解得:m<6,实数m的取值范围是:m<6且m≠1.故选D.点睛:本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.8、B【解析】

分别求出a、b、c、d的值,然后进行比较大小进行排序即可.【详解】解:a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣,c=(﹣)﹣2=9,d=(﹣)0=1.故b<a<d<c.故选B.【点睛】本题考查了幂运算法则,准确计算是解题的关键.9、C【解析】

根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式,故③错误;④原式,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.10、A【解析】分析:先求得直线AB解析式为y=x﹣1,即可得P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点坐标公式,即可得到点A'的坐标.详解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选A.点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.11、B【解析】

直接利用方差的意义以及全面调查与抽样调查、众数的定义分别分析得出答案.【详解】解:A、了解某型导弹杀伤力的情况应使用抽样调查,故此选项错误;

B、一组数据3、6、6、7、9的众数是6,正确;

C、从2000名学生中选200名学生进行抽样调查,样本容量为200,故此选项错误;

D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则甲的成绩更稳定,故此选项错误;

故选B.【点睛】此题主要考查了方差的意义以及全面调查与抽样调查、众数的定义,正确把握相关定义是解题关键.12、B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图二、填空题(每题4分,共24分)13、14或16.【解析】

求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)若4为腰长,6为底边长,由于6−4<4<6+4,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+4+4=14.(2)若6为腰长,4为底边长,由于6−6<4<6+6,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+6+4=16.故等腰三角形的周长为:14或16.故答案为:14或16.【点睛】此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论14、乙【解析】

由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】∵该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,∴甲被淘汰,又∵丙的总分为80×60%+90×30%+73×10%=82.3(分),乙的总分是82.5,∴根据规定,将被录取的是乙,故答案为:乙.【点睛】本题考查了加权平均数的计算.解题的关键是熟练掌握加权平均数的定义.15、4【解析】

按照二次根式的乘、除运算法则运算即可求解.【详解】解:原式=故答案为:4.【点睛】本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.16、【解析】

连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.【详解】解:连接EA,如图,由作图得到MN垂直平分AC,∴EC=EA,∵四边形ABCD为矩形,∴CD=AB=8,∠D=90°,设CE=x,则AE=x,DE=8-x,在Rt△ADE中,62+(8-x)2=x2,解得x=,即CE的长为.故答案为.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.17、【解析】

由矩形的性质及翻折变换先证AF=CF,再在Rt△CDF中利用勾股定理求出CF的长,可通过S△AFC=AF•CD求出△ACF的面积.【详解】∵四边形ABCD为矩形,

∴∠D=90°,AD∥BC,CD=AB=1,AD=BC=3,

∴∠FAC=∠ACB,

又∵∠B沿着对角线AC翻折能与∠E重合,

∴∠ACB=∠ACF,

∴∠FAC=∠ACF,

∴FA=FC,

在Rt△DFC中,

设FC=x,则DF=AD-AF=3-x,

∵DF2+CD2=CF2,

∴(3-x)2+12=x2,

解得,x=,

∴AF=,

∴S△AFC=AF•CD

=××1

=.故答案是:.【点睛】考查了矩形的性质,轴对称称的性质,勾股定理,三角形的面积等,解题关键是要先求出AF的长,转化为求FC的长,在Rt△CDF中利用勾股定理求得.18、【解析】

根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.【详解】根据题意得:x-1≥0,解得:x≥1.故答案为:.【点睛】此题考查二次根式,解题关键在于掌握二次根式有意义的条件.三、解答题(共78分)19、(1);(2),PA的长为2或1.【解析】

(1)由折叠的性质可得E,F,D三点在同一直线上,在Rt△DEC中,根据勾股定理可求出BE,CE,DE的长,再根据面积法即可求出CK的值;(2)分两种情况进行讨论:根据A′B′=4列出方程求解即可.【详解】⑴如图,∵四边形ABCD为矩形,将

△ADP

△BPE分别沿DP与PE折叠,∴∠PFD=∠PFE=90°,

∴∠PFD+∠PFE=180°,即:E,F,D三点在同一直线上.设BE=EF=x,则EC=1-x,

∵DC=AB=8,DF=AD=1,在Rt△DEC中,∵DE=DF+FE=1+x,EC=1-x,DC=8,∴(1+x)2=(1-x)2+82,计算得出x=,即BE=EF=,∴DE=,EC=,∵S△DCE=DC∙CE=DECK,∴CK=;⑵①如图2中,设AP=x,则PB=8-x,由折叠可知:PA′=PA=x,PB′=PB=8-x,∵A′B′=4,∴8-x-x=4,

∴x=2,即AP=2.②如图3中,∵A′B′=4,∴x-(8-x)=4,

∴x=1,即AP=1.

综上所述,PA的长为2或1.【点睛】此题是四边形综合题,主要考查了矩形的性质,折叠问题,勾股定理.熟练运用勾股定理列方程求解是解本题的关键.20、(1)详见解析;(2)详见解析【解析】

(1)连接AB,EF,交点设为P,射线AP即为所求;(2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.【详解】解:(1)连接AB,EF,交点设为P,射线AP即为所求;(2)如图所示,平行四边形MBCN即为所求.【点睛】本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.21、(1);(2)①或.②1或2.【解析】

(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.

(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.

②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.【详解】解:(1))∵四边形OACD是正方形,边长为3,

∴点B的纵坐标为3,点E的横坐标为3,

∵反比例函数的图象交AC,CD于点B,E,设的坐标分别为.∵S△OBE=4,可得,.解得,,(舍).所以,反比例函数的解析式为.(2))①如图1中,设直线m交OD于M.由(1)可知B(1,3),AB=1,BC=2,

当PC=PQ,∠CPQ=90°时,

∵∠CBP=∠PMQ=∠CPQ=90°,

∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,

∴∠PCB=∠MPQ,∵PC=PQ,

∴△CBP≌△PMQ(AAS),

∴BC=PM=2,PB=MQ=1,

∴PC=PQ=∴S△PCQ=如图2中,当PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),

∴PM=BC=2,OM=PB=1,

∴PC=PQ=,∴S△PCQ=.所以,的面积为或.②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.或CQ′=PQ′=,可得S△P′CQ′=2,不存在点C为等腰三角形的直角顶点,

综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.

故答案为1或2.【点睛】本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.【解析】

(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;(2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.【详解】(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,由题意5x+2(x+100)=2300,解得x=300,答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.(2)由题意w=300x+400(7-x)=-100x+2800,又30x+45(7-x)≥275,解得x≤,∴x的最大值为2,∵-100<0,∴x=2时,w的值最小,最小值为1.答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.【点睛】本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.23、(1);(2).【解析】

(1)提取公因式-x后再利用完全平方公式分解因式即可;(2)方程两边同乘以(x+3)(x-3),化分式方程为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】(1)原式(2),令代入,∴原分式方程的解为:,【点睛】本题考查了因式分解及解分式方程,正确利用提公因式法及公式法分解因式时解决(1)题的关键;解决(2)题要注意验根.24、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.【解析】

(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论