江西省新余九中学2024年八年级数学第二学期期末统考模拟试题含解析_第1页
江西省新余九中学2024年八年级数学第二学期期末统考模拟试题含解析_第2页
江西省新余九中学2024年八年级数学第二学期期末统考模拟试题含解析_第3页
江西省新余九中学2024年八年级数学第二学期期末统考模拟试题含解析_第4页
江西省新余九中学2024年八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省新余九中学2024年八年级数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知关于x的方程x2-kx+6=0有两个实数根,则k的值不可能是()A.5 B.-8 C.2 D.42.若分式无意义,则x的值为(

)A. B. C. D.3.如图,已知点P是∠AOB平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm.若点C是OB上一个动点,则PC的最小值为()cm.A.7 B.6 C.5 D.44.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40° B.70° C.80° D.140°5.在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是()A. B.C. D.6.下列分式中,是最简分式的是A. B. C. D.7.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定8.已知一次函数y=kx﹣1,若y随x的增大而减小,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()A. B. C. D.10.如图,△ABC的周长为28,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.1 B.2 C.3 D.411.直线y=-3x+2经过的象限为()A.第一、二、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第二、三、四象限12.张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A. B.C. D.二、填空题(每题4分,共24分)13.已知,菱形中,、分别是、上的点,且,,则__________度.14.函数中自变量的取值范围是_________________.15.若多项式,则=_______________.16.如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.17.如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______18.如图,点P是平面坐标系中一点,则点P到原点的距离是_____.三、解答题(共78分)19.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?20.(8分)如图,⊿是直角三角形,且,四边形是平行四边形,为的中点,平分,点在上,且.求证:21.(8分)(1)计算:(2)当时,求代数的值.22.(10分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段频数频率30~40100.0540~503650~600.3960~7070~80200.10总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?23.(10分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().24.(10分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)25.(12分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.26.已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.(1)试说明:∠EFD=(∠C﹣∠B);(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据判别式的意义得到k2≥24,然后对各选项进行判断.【详解】解:根据题意得△=(-k)2-4×6≥0,即k2≥24,故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2、C【解析】

根据分式无意义的条件即可求出答案.【详解】由题意可知:x-1=0,

即x=1,分式无意义,

故选:C.【点睛】此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.3、D【解析】

根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而的到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.【详解】∵点P是∠AOB平分线上的一点,∴∵PD⊥OA,M是OP的中点,∴∴∵点C是OB上一个动点∴当时,PC的值最小∵OP平分∠AOB,PD⊥OA,∴最小值,故选:D.【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、B【解析】

根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=12(180°﹣∠A)=12×140°=∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选B.【点睛】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键在于理解旋转角的定义.5、A【解析】

确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.【详解】函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,所以一次函数的图象经过一、二、四象限,故选A.【点睛】考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.6、D【解析】

最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A、=,错误;B、=,错误;C、=,错误;D、是最简分式,正确.故选D.【点睛】此题考查最简分式问题,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7、B【解析】

试题分析:根据直角三角形斜边上的中线等于斜边的一半,可以证明DE=BE,再根据等腰三角形的性质即可解答.解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠1.故选B.考点:直角三角形斜边上的中线;等腰三角形的判定与性质.8、D【解析】

先根据一次函数y=kx﹣1中,y随x的增大而减小判断出k的符号,再根据一次函数的性质判断出此函数的图象所经过的象限,进而可得出结论.【详解】解:∵一次函数y=kx﹣1中,y随x的增大而减小,∴k<0,∴此函数图象必过二、四象限;∵b=﹣1<0,∴此函数图象与y轴相交于负半轴,∴此函数图象经过二、三、四象限.故选:D.【点睛】本题主要考查一次函数的图象与性质,掌握一次函数的图象与性质是解题的关键.9、C【解析】

解:第一个阶段,逆水航行,用时较多;第二个阶段,在乙地停留一段时间,随着时间的增长,路程不再变化,函数图象将与x轴平行;第三个阶段,顺水航行,所走的路程继续增加,相对于第一个阶段,用时较少,故选C.10、B【解析】

根据已知条件证明△AQB≌△EQB及△APC≌△DPC,再得出PQ是△ADE的中位线,根据题中数据,根据DE=BE+CD-BC求出DE的长度,最后由中位线的性质即可求出PQ的长度.【详解】解:∵BQ平分∠ABC,∴∠ABQ=∠EBQ,∵BQ⊥AE,∴∠AQB=∠EQB=90°,在△AQB与△EQB中∴△AQB≌△EQB(ASA)∴AQ=EQ,AB=BE同理可得:△APC≌△DPC(ASA)∴AP=DP,AC=DC,∴P,Q分别为AD,AE的中点,∴PQ是△ADE的中位线,∴PQ=,∵△ABC的周长为28,BC=12,∴AB+AC=28-12=16,即BE+CD=16,∴DE=BE+CD-BC=16-12=4∴PQ=2故答案为:B.【点睛】本题主要考查了中位线的性质,涉及全等三角形的判定及三角形周长计算的问题,解题的关键是根据全等三角形的性质得出中位线.11、A【解析】分析:根据一次函数的性质解答即可.详解:由题意可得,一次函数的系数小于零,则一次函数的图象经过二、四象限,因为一次函数的常数项大于零,则一次函数的图象与轴相交于正半轴,则经过第一象限,综上所述,一次函数的图象经过一、二、四象限,故本一次函数不经过第三象限.故选A.点睛:本题考查了一次函数的图象,熟练掌握一次函数的性质是解本题的关键.12、C【解析】

张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢.【详解】根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢,所以选项C比较符合题意.故选C【点睛】考核知识点:函数图象的判断.理解题意是关键.二、填空题(每题4分,共24分)13、【解析】

先连接AC,证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后运用三角形外角性质,求出∠CEF的度数.【详解】如图,连接AC,在菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=AC,∵∠BAE+∠CAE=∠BAC=60°,∠CAF+∠EAC=∠EAF=60°,∴∠BAE=∠CAF,∵∠B=∠ACF=60°,在△ABE和△ACF中,∠B=∠ACF,AB=AC,∠BAE=∠CAF,∴△ABE≌△ACF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,∴60°+∠CEF=60°+23°,解得∠CEF=23°.故答案为23°.【点睛】本题考查了菱形的性质和全等三角形的判定,熟练掌握全等三角形的判定方法,结合等边三角形性质和外角定义是解决本题的关键因素.14、且【解析】

根据分式和二次根式有意义的条件列不等式组求解即可.【详解】根据分式和二次根式有意义的条件可得解得且故答案为:且.【点睛】本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.15、-1【解析】

利用多项式乘法去括号,根据对应项的系数相等即可求解.【详解】∵∴,故答案为:-1.【点睛】本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.16、AB的中点.【解析】

若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【详解】当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形,故答案为AB的中点.【点睛】此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形17、3【解析】

根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.【详解】解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,∵四边形ABCD是平行四边形,∴OB=OD=12∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,∴∠AOE=60º,OE=OB,∴∠EOD=60º,OE=OD,∴△OED是等边三角形,∴∠DEO=∠AOE=60º,ED=OD=2,∴ED∥AC,∴S△AED=S△OED,作OF⊥ED于F,DF=12∴OF=OD2-DF∴S△OED=12ED·DF=∴S△AED=3.故答案为:3.【点睛】本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.18、1【解析】

连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【详解】连接PO,∵点P的坐标是(),

∴点P到原点的距离==1.故答案为:1【点睛】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.三、解答题(共78分)19、(1)该一次函数解析式为y=x+1;(2)离加油站的路程是10千米.【解析】

(1)分析题意,首先根据函数图象中点的坐标利用待定系数法求出一次函数解析式;

(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,用总路程减去剩余油量为8升时行驶的路程即可解答本题。【详解】(1)设该一次函数解析式为y=kx+b,

将(150,45)、(0,1)代入y=kx+b中,得,

解得:,

∴该一次函数解析式为y=x+1.

(2)当y=x+1=8时,

解得x=2.

即行驶2千米时,油箱中的剩余油量为8升.

530-2=10千米,

油箱中的剩余油量为8升时,距离加油站10千米.

∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题主要考查的是一次函数的应用,解题的关键是掌握待定系数法.20、证明见解析.【解析】分析:延长DE交AB于点G,连接AD.构建全等三角形△AED≌△DFB(SAS),则由该全等三角形的对应边相等证得结论.详解:证明:延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE.点睛:本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21、(1);(2)【解析】

(1)根据二次根式的运算法则和完全平方公式计算并化简即可;(2)根据x,y的数值特点,先求出x+y,xy的值,再把原式变形代入求值即可。【详解】解:(1)原式==(2),,则故答案为:;【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是关键。22、(1)见解析;(2)见解析;(3)76(辆).【解析】

(1)根据频数÷总数=频率进行计算即可:36÷200=0.18,200×0.39=78,200﹣10﹣36﹣78﹣20=56,56÷200=0.1.(2)结合(1)中的数据补全图形即可.(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.【详解】解:(1)填表如下:数据段频数频率30~40100.0540~50360.1850~60780.3960~70560.170~80200.10总计2001(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.23、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解析】

由菱形的判定及其性质求解可得.【详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)【点睛】此题考查菱形的判定,掌握判定定理是解题关键.24、a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:,则整个乙部门的优秀率也是,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩人数部门甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.25、(1)见解析;(2)见解析.【解析】试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论