山东省泰安市南关中学2024年八年级下册数学期末检测试题含解析_第1页
山东省泰安市南关中学2024年八年级下册数学期末检测试题含解析_第2页
山东省泰安市南关中学2024年八年级下册数学期末检测试题含解析_第3页
山东省泰安市南关中学2024年八年级下册数学期末检测试题含解析_第4页
山东省泰安市南关中学2024年八年级下册数学期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安市南关中学2024年八年级下册数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知直线(m,n为常数)经过点(0,-4)和(3,0),则关于x的方程的解为A. B. C. D.2.一组数据5,2,3,5,4,5的众数是()A.3 B.4 C.5 D.83.对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是()x-10123y2581214A.5 B.8 C.12 D.144.为筹备班级的元旦联欢会,班长对全班同学爱吃哪几种零食作民意调查,从而最终决定买什么零食,下列调查数据中最值得关注的是()A.中位数 B.平均数 C.众数 D.标准差5.一副三角板按图1所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为()A.16+16cm2B.16+cm2C.16+cm2D.48cm26.使有意义的x的取值范围是(▲)A.x>-1 B.x≥-1 C.x≠-1 D.x≤-17.下列计算正确的是()A. B. C. D.8.下列函数的图象经过,且随的增大而减小的是()A. B. C. D.9.关于一元二次方程根的情况描述正确的是()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.不能确定10.设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于()A.2 B. C. D.11.如图,在平行四边形ABCD中,BD为对角线,点E、O、F分别是

AB、BD、BC的中点,且,,则平行四边形ABCD的周长为A.10 B.12 C.15 D.2012.在Rt△中,,,则()A.9 B.18 C.20 D.24二、填空题(每题4分,共24分)13.使有意义的x的取值范围是_____.14.“如果a=b,那么a2=b2”,写出此命题的逆命题_______.15.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.

16.若有增根,则m=______17.一次函数的图象与轴交于点________;与轴交于点______.18.若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.三、解答题(共78分)19.(8分)如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.20.(8分)如图,在Rt△ABC中,∠C=90°.(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连结CD,则DE=_,CD=_.21.(8分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.22.(10分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.23.(10分)为了宣传2018年世界杯,实现“足球进校园”的目标,任城区某中学计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)学校准备购进这两种品牌的足球共50个,并且B品牌足球的数量不少于A品牌足球数量的4倍,请设计出最省钱的购买方案,求该方案所需费用,并说明理由.24.(10分)城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡.从城运往、两乡运肥料的费用分别是每吨元和元,从城往、两乡运肥料的费用分别为每吨元和元,现在乡需要肥料吨,乡需要肥料吨,设城运往乡的肥料量为吨,总运费为元.(1)写出总运费元与之间的关系式;(2)当总费用为元,求从、城分别调运、两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?25.(12分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC=4,求菱形的周长.26.如图1是一个长时间没有使用的弹簧测力计,经刻度盘,指针,吊环,挂钩等个部件都齐全,但小明还是对其准确程度表示怀疑,于是他利用数学知识对这个弹簧测力计进行检验。下表是他记录的数据的一部分:弹簧所挂物体的质量(单位:㎏)00.10.20.30.4弹簧的长度(单位cm)1212.51313.514在整理数据的过程中,他发现在所挂物体的质量不超过1㎏时,弹簧的长度与弹簧所挂物体的质量之间存在着函数关系,于是弹簧所挂物体的质量x㎏,弹簧的长度为ycm。(1)请你利用如图2的坐标系,描点并画出函数的大致图象。(2)根据函数图象,猜想y与x之间是怎样的函数,求出对应的函数解析式。(3)你认为该测力计是否可以正常使用,如果可以,请你求出所挂物体的质量为1㎏时,弹簧的长度;如果不可以,请说明理由。

参考答案一、选择题(每题4分,共48分)1、C【解析】

将点(0,−4)和(1,0)代入y=mx+n,求出m,n的值,再解方程mx−n=0即可.【详解】解:∵直线y=mx+n(m,n为常数)经过点(0,−4)和(1,0),∴n=−4,1m+n=0,解得:m=,n=−4,∴方程mx−n=0即为:x+4=0,解得x=−1.故选:C.【点睛】本题考查了一次函数与一元一次方程,待定系数法求一次函数的解析式,解一元一次方程.求出m,n的值是解题的关键.2、C【解析】

根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】因为5出现3次,最多,所以,众数为3,选C。【点睛】此题考查众数,解题关键在于掌握其定义3、C【解析】

经过观察5组自变量和相应的函数值得(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【详解】∵(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选C.【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.4、C【解析】

根据众数的定义即可求解.【详解】根据题意此次调查数据中最值得关注的是众数,故选C.【点睛】此题主要考查众数的特点,解题的关键是熟知众数的定义.5、B【解析】

过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.【详解】解:过G点作GH⊥AC于H,如图,

∠GAC=60°,∠GCA=45°,GC=8cm,

在Rt△GCH中,GH=CH=GC=4cm,

在Rt△AGH中,AH=GH=cm,

∴AC=AH+CH=+4(cm).

∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2

故选:B.【点睛】本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.6、B【解析】分析:让被开方数为非负数列式求值即可.解答:解:由题意得:x+1≥0,解得x≥-1.故选B.7、C【解析】

根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.【详解】A、不是同类二次根式,不能合并,故本选项错误;B、不能合并,故本选项错误;C、故本选项正确;D、故本选项错误;故选:C.【点睛】本题考查了二次根式的运算,掌握运算法则是解题的关键.8、D【解析】

根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.再把点代入,符合的函数解析式即为答案.【详解】A.,当x=0时,y=0,图象不经过,不符合题意;B.,,当x=0时,y=-1,图象不经过,不符合题意;C.,k=2>0,随的增大而增大,不符合题意;D.y=-x+1,当x=0时,y=1,图象经过,k=-1<0,随的增大而减小【点睛】本题考查了一次函数图像的性质,判断函数图像是否经过点,把点的x坐标代入求y坐标,如果y值相等则函数图像经过点,如不相等则不经过,当k>o,y随的增大而增大,,当k<0,随的增大而减小.9、A【解析】

将该一元二次方程转化为一般形式,求出Δ的值,进行判断即可.【详解】解:∵∴原方程有两个相等的实数根。故答案为:A【点睛】本题考查了Δ与一元二次方程实数根的关系,①时,该一元二元方程有两个不相等的实数根;②时,该一元二元方程有两个相等的实数根;时,该一元二元方程没有实数根.10、B【解析】

利用矩形的边=面积÷邻边,列式计算即可.【详解】解:a=S÷b=2÷=,故选:B.【点睛】此题考查二次根式的乘除法,掌握长方形面积计算公式是解决问题的根本.11、D【解析】

由于点E、O、F分别是

AB、BD、BC的中点,根据三角形的中位线性质可得:AD=2OE=6,CD=2OF=4,再根据平行四边形周长公式计算即可.【详解】因为点E,O,F分别是

AB,BD,BC的中点,所以OE是△ABD的中位线,OF是△DBC中位线,所以AD=2OE=6,CD=2OF=4,所以平行四边形的周长等于=,故选D.【点睛】本题主要考查三角形的中位线性质,解决本题的关键是要熟练掌握三角形中位线的性质.12、B【解析】

根据勾股定理即可得到结论.【详解】∵Rt△中,,,∴2=18故选B.【点睛】此题主要考查勾股定理,解题的关键是熟知勾股定理的内容.二、填空题(每题4分,共24分)13、x≥2【解析】

根据题意可得2x﹣4≥0,然后求解关于x的一元一次不等式即可.【详解】解:∵有意义,∴2x﹣4≥0,解得:x≥2.故答案为x≥2.【点睛】本题考查了算术平方根有意义,解一元一次不等式,解此题的关键在于熟练掌握其知识点.14、如果a2=b2,那么a=b.【解析】

把原命题的题设与结论交换即可得解.【详解】“如果a=b,那么a2=b2”的逆命题是“如果a2=b2,那么a=b”故答案为:如果a2=b2,那么a=b.【点睛】此题考查命题与定理,解题关键在于掌握其定义15、70°【解析】

由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.【详解】解:由题意知:∠ACA′=20°;

若AC⊥A'B',则∠A′+∠ACA′=90°,

得:∠A′=90°-20°=70°;

由旋转的性质知:∠BAC=∠A′=70°;

故∠BAC的度数是70°.故答案是:70°【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.16、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-3),得

x-1(x-3)=1-m,

∵方程有增根,

∴最简公分母x-3=0,即增根是x=3,

把x=3代入整式方程,得m=-1.

故答案是:-1.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、【解析】

分别令x,y为0,即可得出答案.【详解】解:∵当时,;当时,∴一次函数的图象与轴交于点,与轴交于点.故答案为:;.【点睛】本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.18、m≤【解析】

由关于x的一元二次方程x2﹣2x+4m=0有实数根,可知b2﹣4ac≥0,据此列不等式求解即可.【详解】解:由题意得,4-4×1×4m≥0解之得m≤故答案为m≤.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.三、解答题(共78分)19、证明:在ABCD中,AD=BC且AD∥BC,∵BE=FD,∴AF=CE.∴四边形AECF是平行四边形【解析】试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC是解决问题的关键.20、(1)作图见解析;(2)3,1.【解析】

(1)作边AB的中垂线,交AB于D,过点D作DE⊥BC,垂足为E,连接DE即可.(2)根据三角形的中位线定理直接得出DE的长,再根据直角三角形斜边上的中线等于斜边的一半,求出CD.【详解】(1)如图.(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=1,故答案为3,1.【点睛】本题考查了基本作图,以及三角形的中位线定理、勾股定理,是基础知识要熟练掌握.21、36平方米【解析】

连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.【详解】连接AC,如图,∵AB⊥BC,∴∠ABC=90°.∵AB=3米,BC=4米,∴AC=5米.∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).【点睛】本题考查了勾股定理和勾股定理的逆定理.22、(1)详见解析;(2)1【解析】

(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【详解】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点睛】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.23、(1)A品牌的足球的单价为40元,B品牌的足球的单价为100元(2)当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元【解析】

(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列二元一次方程组求解可得;(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据“B品牌足球的数量不少于A品牌足球数量的4倍”列不等式求出a的范围,再由购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000知当a越大,购买的总费用越少,据此可得.【详解】解:(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据题意,得:解得:答:A品牌的足球的单价为40元,B品牌的足球的单价为100元.(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据题意,得:50﹣a≥4a,解得:a≤10,∵购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000,∴当a越大,购买的总费用越少,所以当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元.【点睛】本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系和不等关系,并据此列出方程或不等式.24、(1);(2)城运往乡的肥料量为吨,城运往乡的肥料量为吨,城运往的肥料量分别为吨,城运往的肥料量分别为吨;(3)从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元【解析】

(1)设C城运往A乡的化肥为x吨,表示出A城运往D乡的化肥为吨,B城运往C乡的化肥为吨,B城运往D乡的化肥为吨,总运费为y,然后根据总运费的表达式列式整理,再根据运往各地的肥料数不小于0列式求出x的取值范围即可.(2)将代入(1)中求得的关系式,即可完成.(3)利用(1)中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论