




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省淮南市西部八年级数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,一次函数和反比例函数的图象交于,,两点,若,则的取值范围是()A. B.或C. D.或2.若a+c=b,那么方程ax2+bx+c=0(a≠0)必有一根是()A.1B.﹣1C.±1D.03.如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.4.如图,中,、分别是、的中点,平分,交于点,若,则的长是A.3 B.2 C. D.45.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3 B.4 C.5 D.66.矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H.若AB=6,则CH=()A. B. C. D.7.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. B. C. D.8.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是()A.1999年 B.2004年 C.2009年 D.2014年9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4π B.2π C.π D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等二、填空题(每小题3分,共24分)11.实数,在数轴上对应点的位置如图所示,化简的结果是__________.12.如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.13.已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=_____.14.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.15.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.16.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.571.2小李7.17.585.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.17.若分式的值为0,则__.18.一种圆柱形口杯(厚度忽略不计),测得内部底面半径为,高为.吸管如图放进杯里,杯口外面露出部分长为,则吸管的长度为_____.三、解答题(共66分)19.(10分)如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?20.(6分)某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.(1)求每盏A型节能台灯的进价是多少元?(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?21.(6分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.(1)图中m=_____,n=_____;(直接写出结果)(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?22.(8分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.23.(8分)已知,如图,点E为▱ABCD内任意一点,若▱ABCD的面积为6,连结点E与▱ABCD的四个顶点,求图中阴影部分的面积.24.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.25.(10分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN1=CD1+CN1;在图③(三角板的一直角边与OC重合)中,CN1=BN1+CD1.请你对这名成员在图①和图③中发现的结论选择其一说明理由.(1)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.26.(10分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
在图象上找出一次函数在反比例函数下方时x的范围,即为所求x的范围.【详解】解:由一次函数y1=ax+b和反比例函数的图象交于A(-2,m),B(1,n)两点,根据图象可得:当y1<y2时,x的范围为-2<x<0或x>1.
故选:D.【点睛】本题考查反比例函数与一次函数的交点问题,利用了数形结合的数学思想,数形结合思想是数学中重要的思想方法,学生做题时注意灵活运用.2、B【解析】解:根据题意:当x=﹣1时,方程左边=a﹣b+c,而a+c=b,即a﹣b+c=0,所以当x=﹣1时,方程ax2+bx+c=0成立.故x=﹣1是方程的一个根.故选B.3、C【解析】
写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.4、A【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【详解】在中,、分别是、的中点,,,平分,...在中,,,.故选.【点睛】本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5、B【解析】
解:设两个阴影部分三角形的底为AD,CB,高分别为h1,h2,则h1+h2为平行四边形的高,∴=4故选:B【点睛】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.6、D【解析】
过作,交于,交于,则,证是等腰直角三角形,得出,证,为的中位线,进而得出答案.【详解】解:如图,过作,交于,交于,则,四边形是矩形,,,,,,平分,,,,,是等腰直角三角形,,点是的中点,,为的中位线,,,;故选:.【点睛】本题考查了矩形的性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,三角形中位线定理等知识;熟练掌握矩形的性质和等腰直角三角形的判定与性质是解本题的关键.7、D【解析】
根据等边三角形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三角形,∵B的坐标为(2,0),∴A(1,),∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(4,),故选:D.【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.8、C【解析】
把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.9、B【解析】
如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.【详解】如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.【点睛】本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.10、D【解析】
根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【点睛】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.二、填空题(每小题3分,共24分)11、【解析】由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.12、30°【解析】分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.详解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OD,∴∠ODA=∠DAE,∵∠CDE=2∠ADE,∴∠ADE=90°÷3=30°,∵DE⊥AC,∴∠AED=90°,∴∠DAE=60°,∴∠ODA=60°,∴∠BDC=90°-60°=30°;故答案为:30°.点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.13、-2【解析】
先提公因数法把多项式x3y+x2y2+xy3因式分解,再根据完全平方公式因式分解即可求解.【详解】解:∵xy=﹣1,x+y=2,∴x3y+x2y2+xy3=代入数据,原式=故答案为:.【点睛】本题考查了因式分解,先提公因式,然后再套完全平方公式即可求解.14、2【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.【详解】∵2=1×2,∴F(2)=,故(1)是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).故答案为2.【点睛】本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).15、1【解析】
解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得,可求得y≤因为y为正整数,所以最多可以买钢笔1支.故答案为:1.16、小李【解析】
根据方差的意义知,波动越大,成绩越不稳定.观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,【详解】观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定17、2【解析】
根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:,解得:,故答案为:2;【点睛】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.18、17【解析】
根据吸管、杯子的直径及高恰好构成直角三角形,求出的长,再由勾股定理即可得出结论.【详解】如图,连接,杯子底面半径为,高为,,,吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,,杯口外面露出,吸管的长为:.故答案为:.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.三、解答题(共66分)19、乙船航行的方向为南偏东55°.【解析】试题分析:由题意可知:在△ABC中,AC=60,AB=80,BC=100,由此可由“勾股定理逆定理”证得∠BAC=90°,结合∠EAD=180°和∠EAC=35°即可求得∠DAB的度数,从而得到乙船的航行方向.试题解析:由题意可知,在△ABC中,AC=30×2=60,AB=40×2=80,BC=100,∴AC2=3600,AB2=6400,BC2=10000,∴AC2+AB2=BC2,∴∠CAB=90°,又∵∠EAD=180°,∠EAC=35°,∴∠DAB=90°-∠CAE=90°-35°=55°,∴乙船航行的方向为南偏东55°.点睛:本题的解题要点是:在△ABC中,由已知条件先求得AC和AB的长,再结合AC=100,即可用“勾股定理的逆定理”证得∠BAC=90°,这样即可求出∠DAB的度数,从而使问题得到解决.20、(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.【解析】
(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;
(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.【详解】解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据题意得,,解得:x=60,经检验:x=60是原方程的解,故x+40=100,答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,依题意有m≤2(100﹣m),解得m≤66,90﹣60=30(元),140﹣100=40(元),∵m为整数,30<40,∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,34×30+40×66=1020+2640=3660(元).此时利润为3660元.答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.21、(1)25,1;(2)小明回家骑行速度至少是0.2千米/分.【解析】
(1)根据函数图象,先求出爸爸骑共享单车的速度以及匀速步行的速度,再求出返回途中爸爸从驿站到公园入口的时间,得到m的值;然后求出爸爸从公园入口到家的时间,进而得到n的值;(2)根据小明要在爸爸到家之前赶上得到不等关系:(n﹣爸爸从驿站到家的时间﹣小明到达驿站后逗留的10分钟)×小明回家骑行的速度≥驿站与家的距离,依此列出不等式,求解即可.【详解】(1)由题意,可得爸爸骑共享单车的速度为:=0.2(千米/分),爸爸匀速步行的速度为:=0.1(千米/分),返回途中爸爸从驿站到公园入口的时间为:=5(分钟),所以m=20+5=25;爸爸从公园入口到家的时间为:=20(分钟),所以n=25+20=1.故答案为25,1;(2)设小明回家骑行速度是x千米/分,根据题意,得(1﹣25﹣10)x≥2,解得x≥0.2.答:小明回家骑行速度至少是0.2千米/分.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,路程、速度与时间关系的应用,理解题意,从图象中获取有用信息是解题的关键.22、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套【解析】试题分析:(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;(2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得到利润最小值;(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.试题解析:(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,解得16≤x≤1,∵x是正整数,∴x=16或17或1.有以下生产三种方案:生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,∵y随x的增大而减小,∴x=1时,y最小值=266,∴至少可获得利润266元(3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.23、1【解析】
过E作MN⊥BC,交BC于M,交AD于N,得出△EBC的面积+△EAD的面积=AD•EN+BC•EM=BC•MN=平行四边形ABCD的面积,即可得出阴影部分的面积.【详解】解:过E作MN⊥BC,交BC于M,交AD于N,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴EN⊥AD,∵S△AED=AD•EN,S△BCE=BC•EM,∴S△ADE+S△BCE=AD•EN+C•EM=BC•MN=平行四边形ABCD的面积=×6=1,∴阴影部分的面积=1.【点睛】本题主要考查了平行四边形的性质、阴影部分面积的计算;关键是掌握平行四边形的面积公式=底×高.24、-1【解析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.25、(1)见解析;(1)见解析.【解析】
(1)连接DN,根据矩形得出OB=OD,根据线段垂直平分线得出BN=DN,根据勾股定理求出DN的平方,即可求出答案;(1)延长NO交AD于点P,连接PM,MN,证△BNO≌△DPO,推出OP=ON,DP=BN,根据线段垂直平分线求出PM=MN,根据勾股定理求出即可.【详解】(1)选①.证明如下:连接DN,∵四边形ABCD是矩形,∴OB=OD,∵∠DON=90°,∴BN=DN,∵∠BCD=90°,∴DN1=CD1+CN1,∴BN1=CD1+CN1;(1)延长NO交AD于点P,连接PM,MN,∵四边形ABCD是矩形,∴OD=OB,AD∥BC,∴∠DPO=∠BNO,∠PDO=∠NBO,在△BON和△DOP中,∵,∴△BON≌△DOP(AAS),∴ON=OP,BN=PD,∵∠MON=90°,∴PM=MN,∵∠ADC=∠BCD=90°,∴PM1=PD1+DM1,MN1=CM1+CN1,∴PD1+DM1=CM1+CN1,∴BN1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客户停送电管理制度
- 宣传部统一管理制度
- 家具送货单管理制度
- 个人学习远程培训总结-1
- 彩钢厂安全管理制度
- 循环水使用管理制度
- 心理检测科管理制度
- 快递员业务管理制度
- 总分包安全管理制度
- 总裁班培训管理制度
- 2025届新疆维吾尔自治区新疆生产建设兵团二中物理高一第二学期期末质量检测试题含解析
- 湖南省株洲荷塘区四校联考2024届八下物理期末综合测试试题及答案解析
- FZ∕T 61002-2019 化纤仿毛毛毯
- GB/T 3880.3-2024一般工业用铝及铝合金板、带材第3部分:尺寸偏差
- 2024年《企业战略管理》期末考试复习题库(含答案)
- 预激综合征的护理
- 室上性心动过速护理
- 临床试验受试者补偿标准
- 2024年高级经济师-金融专业实务考试历年真题摘选附带答案版
- 高中语文《望海潮》《扬州慢》联读+课件+统编版高中语文选择性必修下册
- 一年级小学生竞选三好学生演讲稿
评论
0/150
提交评论