版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省东方红林业局中学2024年八年级下册数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是()A.2.5 B.2 C. D.42.下列各组数中,能构成直角三角形的是()A.1,1, B.4,5,6 C.6,8,11 D.5,12,153.某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分 B.87分 C.87.5分 D.90分4.对于正比例函数y3x,下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.y随x的减小而增大D.y有最小值5.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠36.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥ C.0<k< D.≤k≤27.下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有()A.0个 B.1个 C.2个 D.3个8.下列命题是假命题的是()A.菱形的对角线互相垂直平分B.有一斜边与一直角边对应相等的两直角三角形全等C.有一组邻边相等且垂直的平行四边形是正方形D.对角线相等的四边形是矩形9.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.910.如图,已知平行四边形中,则()A. B. C. D.11.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是()A.1 B.4 C.3 D.212.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九边形 B.八边形 C.七边形 D.六边形二、填空题(每题4分,共24分)13.若分式方程有增根,则等于__________.14.如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.15.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是_____.16.如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).17.若α是锐角且sinα=,则α的度数是.18.使代数式有意义的x的取值范围是_____.三、解答题(共78分)19.(8分)计算(+1)(-1)+÷−.20.(8分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形()A.1个 B.2个 C.3个 D.4个21.(8分)如图,在四边形AOBC中,AC//OB,顶点O是原点,顶点B在x轴上,顶点A的坐标为0,8,AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设PQ点运动的时间为ts1求直线BC的函数解析式;2当t为何值时,四边形AOQP是矩形?22.(10分)计算化简(1)(2)23.(10分)某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?24.(10分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.(1)求证,;(2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.25.(12分)如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.26.(1)计算:(2)已知:x=+1,求x2﹣2x的值.
参考答案一、选择题(每题4分,共48分)1、B【解析】
连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半可求解.【详解】如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF==4,∵H是AF的中点,∴CH=AF=×4=2.故选:B.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,难点在于作辅助线构造出直角三角形.2、A【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两短边的平方和是否等于最长边的平方即可.【详解】解:A.12+12=()2,能构成直角三角形,故符合题意;B.52+42≠62,不能构成直角三角形,故不符合题意;C.62+82≠112,不能构成直角三角形,故不符合题意;D.122+52≠152,不能构成直角三角形,故不符合题意.故选A.【点睛】本题考查了勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.3、B【解析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:王老师的综合成绩为:90×40%+85×60%=87(分),
故选:B.【点睛】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.4、B【解析】
正比例函数中,k>0:y随x的增大而增大;k<0:y随x的增大而减小.【详解】∵正比例函数y3x中,k=3>0,∴y随x的增大而增大,故选:B.【点睛】本题考查了正比例函数的性质,确定k值,判断出其增减性是解题的关键.5、D【解析】
分式有意义,则分式的分母不为零,即x-3≠0,据此求解即可.【详解】若分式有意义,则x-3≠0,x≠3故选:D【点睛】本题考查的是分式有意义的条件,掌握分式有意义时分式的分母不为0是关键.6、D【解析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.【详解】解:直线与正方形有公共点,直线在过点和点两直线之间之间,如图,可知,,当直线过点时,代入可得,解得,当直线过点时,代入可得,解得,的取值范围为:,故选:.【点睛】本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.7、C【解析】
确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断【详解】解:①上海明天是晴天,是随机事件;②铅球浮在水面上,是不可能事件,属于确定事件;③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;故选:C.【点睛】此题考查随机事件,解题关键在于根据定义进行判断8、D【解析】试题分析:根据菱形的性质对A进行判断;根据直角三角形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据矩形的判定方法对D进行判断.解:A、菱形的对角线互相垂直平分,所以A选项为真命题;B、有一斜边与一直角边对应相等的两直角三角形全等,所以B选项为真命题;C、有一组邻边相等且垂直的平行四边形是正方形,所以C选项为真命题;D、对角线相等的平行四边形是矩形,所以D选项为假命题.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9、C【解析】
根据这组数据是从大到小排列的,找出最中间的数即可.【详解】解:∵原数据从大到小排列是:9,9,8,8,7,6,5,∴处于最中间的数是8,∴这组数据的中位数是8.故选C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.10、B【解析】
由平行四边形的邻角互补得到的度数,由平行四边形的对角相等求.【详解】解:因为:平行四边形,所以:,,又因为:所以:,解得:,所以:.故选B.【点睛】本题考查的是平行四边形的性质,掌握平行四边形的角的性质是解题关键.11、C【解析】试题分析:先由∠BAC=90°,AD⊥BC,∠B=∠B证得△ABD∽△CBA,再根据相似三角形的性质求得BD的长,即可求得结果.解:∵∠BAC=90°,AD⊥BC,∠B=∠B∴△ABD∽△CBA∴∵AB=2,BC=4∴,解得∴CD=BC-BD=3故选C.考点:相似三角形的判定和性质点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.12、A【解析】
根据正多边形每个内角度数的求算公式:建立方程求解即可.【详解】正多边形每个内角的度数求算公式:,建立方程得:解得:故答案选:A【点睛】本题考查正多边形的内角与边数,掌握相关的公式是解题关键.二、填空题(每题4分,共24分)13、4【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】解:方程两边都乘以(x-2),得,∵原方程的增根是,把增根代入,得:,∴,故答案为:4.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14、【解析】
根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.【详解】∵π•OA42=π•OA12,
∴OA42=OA12,
∴OA4=OA1;
∵π•OA32=π•OA12,
∴OA32=OA12,
∴OA3=OA1;
∵π•OA22=π•OA12,
∴OA22=OA12,
∴OA2=OA1;∵OA1=R
因此这三个圆的半径为:OA2=R,OA3=R,OA4=R.∴OA4:OA3:OA2:OA1=由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=故答案为:(1);(2).【点睛】本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.15、x=1,y=1【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:函数y=ax+b和y=kx的图象交于点P(1,1)即x=1,y=1同时满足两个一次函数的解析式.所以,方程组的解是,故答案为x=1,y=1.【点睛】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16、3080π.【解析】
用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.【详解】依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面积为3080πmm1.故答案为:3080π.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.17、60°【解析】试题分析:由α是锐角且sinα=,可得∠α=60°.考点:特殊角的三角函数值18、x≥0且x≠2【解析】
根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.【详解】由题意得:x⩾0且2x−1≠0,解得x⩾0且x≠,故答案为x⩾0且x≠.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.三、解答题(共78分)19、1+【解析】
根据实数的运算法则求解.【详解】解:原式=2-1+-=1+【点睛】本题考查了实数的运算,属于简单题,熟悉实数运算法则是解题关键.20、C【解析】
①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.【详解】①由四边形ABCD是正方形和折叠性知,∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,故①正确,②由四边形ABCD是正方形和折叠性得出,∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,∵∠ABF=45°,∴∠ABF=∠DFG,∴AB∥GF,又∵∠BAC=∠BEF=45°,∴EF∥AC,∴四边形AEFG是平行四边形,∴四边形AEFG是菱形.∵在Rt△GFO中,GF=OG,在Rt△BFE中,BE=EF=GF,∴BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性知,AD=FD,AG=FG,DG=DG,在△ADG和△FDG中,,∴△ADG≌△FDG(SSS),∴S△AGD=S△FDG≠S△OGD故③错误.正确的有①②④,故选C.【点睛】本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.21、(1)y=-4x+104;(2)t为6.5.【解析】
(1)首先根据顶点A的坐标为(0,8),AC=24cm,OB=26cm,分别求出点B、C的坐标各是多少;然后应用待定系数法,求出直线BC的函数解析式即可.(2)根据四边形AOQP是矩形,可得AP=OQ,据此求出t的值是多少即可.【详解】解:(1)如图∵顶点A的坐标为(0,8∴B(26,设直线BC的函数解析式是y=kx+b,则26k+b=0解得k=-4b=104∴直线BC的函数解析式是y=-4x+104.(2)如图根据题意得:AP=tcm,BQ=3tcm,则OQ=OB-BQ=26-3t(cm∵四边形AOQP是矩形,∴AP=OQ,∴t=26-3t,解得t=6.5,∴当t为6.5时,四边形AOQP是矩形.【点睛】此题考查了矩形的性质、待定系数法求一次函数的解析式以及动点问题.注意掌握矩形的判定方法是解此题的关键.22、(1)(2)【解析】
(1)原式第一项利用零指数公式化简,第二项利用负指数公式化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.【详解】解:(1)原式=1+3-(-2)=6-;
(2)原式==【点睛】本题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.23、(1)580(个);(2)70(元);(3)为体现“薄利多销”的销售原则,我认为销售价格应定为50元.【解析】
(1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;
(2)根据“售价+月销量减少的个数÷10”进行解答;
(3)设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.【详解】解:(1)当售价为42元时,每月可以售出的个数为600﹣10(42﹣40)=580(个);(2)当书包的月销售量为300个时,每个书包的价格为:40+(600﹣300)÷10=70(元);(3)设销售价格应定为x元,则(x﹣30)[600﹣10(x﹣40)]=10000,解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个,因此为体现“薄利多销”的销售原则,我认为销售价格应定为50元.【点睛】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.24、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.【解析】
(1)根据AAS或ASA即可证明;
(2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标.【详解】(1)∵,∴,,∴,∵,∴(2)∵直线AB与x轴,y轴交于、两点∴直线AB的解析式为∵,∴,设,则把代入得到,∴∵,∴直线BC的解析式为,设直线的解析式为,把代入得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大项目保险的拓展》课件
- 特种作业监护培训
- 普通高校毕业生就业三方协议模板
- 《太平洋鸿鑫人生》课件
- 消防工程承包合同范本2篇
- 《软件项目初始》课件
- 建筑工程施工用铲车租赁合同(04年)
- 2024年度融资租赁合同标的为航空器租赁3篇
- 《无因管理概述》课件
- 燃气中青年干部培训班
- 新生儿先天性心脏病筛查技术规范课件
- 手卫生调查表
- 友善(课件) 小学生主题班会通用版(共45张PPT)
- 人民医院肿瘤科临床技术操作规范2023版
- 15《我与地坛》说课稿+2022-2023学年统编版高中语文必修上册
- PCOS多囊卵巢综合征青春期月经紊乱
- 路灯杆强度计算简述
- 香烟出售情况记录表(竖版10天)
- EPC项目承包人建议书
- 《大数据财务分析-基于Python》课后习题答案
- 8421码到余三循环码的转换电路仿真课设报告
评论
0/150
提交评论