版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖南省茶陵县数学八年级下册期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一次函数y=x-1的图像向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,点E是菱形ABCD对角线BD上任一点,点F是CD上任一点,连接CE,EF,当,时,的最小值是()A. B.10 C. D.53.已知一次函数b是常数且,x与y的部分对应值如下表:x0123y6420那么方程的解是A. B. C. D.4.如图,已知某广场菱形花坛的周长是24米,,则此花坛的面积等于()A.平方米 B.24平方米 C.平方米 D.平方米5.如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A.74cm B.64cm C.54cm D.44cm6.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种7.如图,矩形中,,,点从点出发,沿向终点匀速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B. C. D.8.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5 B.6,8,10 C.5,12,13 D.4,5,69.某班第一小组9名同学数学测试成绩为:78,82,98,90,100,60,75,75,88,这组数据的中位数是A.60 B.75 C.82 D.10010.在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为()A.向左平移了个单位长度 B.向下平移了个单位长度C.横向压缩为原来的一半 D.纵向压缩为原来的一半11.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查12.如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0二、填空题(每题4分,共24分)13.关于t的分式方程=1的解为负数,则m的取值范围是______.14.如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________.15.命题“如果a2=b2,那么a=b.”的否命题是__________.16.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“_____”.17.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
18.今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.三、解答题(共78分)19.(8分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=1.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.20.(8分)已知正比例函数与反比例函数.(1)证明:直线与双曲线没有交点;(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时21.(8分)某工厂制作AB两种型号的环保包装盒.已知用3米同样的材料分别制成A型盒的个数比制成B型盒的个数少1个,且制作一个A型盒比制作一个B型盒要多用20%的材料.求制作每个A,B型盒各用多少材料?22.(10分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.23.(10分)如图,在四边形ABCD中,BD为一条对角线,且,,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分,,求AC的长.24.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.25.(12分)(1)计算:.(2)计算:.(3)先化简,再求值:,其中满足.(4)解方程:.26.如图,在菱形ABCD中,AC=8,BD=6,求△ABC的周长.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题解析:因为一次函数y=x-1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D.考点:一次函数图象与几何变换.2、C【解析】
过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,CE+EF的最小值=AF,根据已知条件得到△ADF是等腰直角三角形,于是得到结论.【详解】解:如图,∵四边形ABCD是菱形,∴点A与点C关于BD对称,过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,∴CE+EF的最小值为AF,∵∠ABC=45°,∴∠ADC=∠ABC=45°,∴△ADF是等腰直角三角形,∵AD=BC=10,∴AF=AD=,故选C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等腰直角三角形的判定和性质,正确的作出图形是解题的关键.3、C【解析】
因为一次函数b是常数且,x与y的部分对应值如表所示,求方程的解即为y=0时,对应x的取值,根据表格找出y=0时,对应x的取值即可求解.【详解】根据题意可得:的解是一次函数中函数值y=0时,自变量x的取值,所以y=0时,x=1,所以方程的解是x=1,故选C.【点睛】本题主要考查一元一次方程与一次函数的关系,解决本题的关键是要熟练掌握一次函数与一元一次方程的关系.4、C【解析】
作菱形的高DE,先由菱形的周长求出边长为6m,再由60°的正弦求出高DE的长,利用面积公式求菱形的面积.【详解】作高DE,垂足为E,则∠AED=90°,∵菱形花坛ABCD的周长是14m,∴AB=AD=6m,∵∠BAD=60°,sin∠BAD=,∴DE=3m,∴菱形花坛ABCD的面积=AB•DE=6×3=18m1.故选C.【点睛】本题考查了菱形的面积的求法,一般作法有两种:①菱形的面积=底边×高;②菱形的面积=两条对角线乘积的一半.5、B【解析】
首先过A作AM垂直PC于点M,过点B作BN垂直DQ于点N,再利用三角函数计算AM和BN,从而计算出MN.【详解】解:根据题意过A作AM垂直PC于点M,过点B作BN垂直DQ于点N所以故选B.【点睛】本题主要考查直角三角形的应用,关键在于计算AM的长度,这是考试的热点问题,应当熟练掌握.6、C【解析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.7、C【解析】
首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【详解】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:C.【点睛】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.8、D【解析】
根据勾股定理即可判断.【详解】A.∵32+42=52,故为直角三角形;B.62+82=102,故为直角三角形;C.52+122=132,故为直角三角形;D.42+52≠62,故不是直角三角形;故选D.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.9、C【解析】
根据中位数的定义:将一组数据按照大小顺序排列后,取最中间的数或最中间两个数的平均数,做为这组数据的中位数.【详解】先将9名同学数学测试成绩:78,82,98,90,100,60,75,75,88,按从小到大排列:60,75,75,78,82,88,90,98,100,其中最中间的数是:82,所以这组数据的中位数是82,故选C.【点睛】本题主要考查数据中位数的定义,解决本题的关键是要熟练掌握中位数的定义.10、C【解析】∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,∴该正方形在纵向上没有变化.又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.故选C.11、D【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.12、A【解析】
根据二次根式的被开方数是非负数建立不等式组即可求出x的值,进而求出y值,最后代入即可求出答案.【详解】解:∵y=+2,∴,解得x=1,∴y=2,∴(﹣x)y=(﹣1)2=1.故选A.【点睛】本题考查了二次根式的性质.牢记二次根式的被开方数是非负数这一条件是解题的关键.二、填空题(每题4分,共24分)13、m<1【解析】
分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.【详解】去分母得:m-5=t-2,解得:t=m-1,由分式方程的解为负数,得到m-1<0,且m-1≠2,解得:m<1,故答案为:m<1.【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14、25【解析】
首先连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,然后根据直角三角形斜边中线定理,即可得出,,又由正方形的性质,得出AC=CD,BC=CF,阴影部分面积即为△CDO和△CFO之和,经过等量转换,即可得解.【详解】连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,如图所示∵,,点O为AB的中点,∴,又∵正方形和正方形,∴AC=CD,BC=CF∴【点睛】此题主要考查勾股定理、直角三角形中位线定理以及正方形的性质,熟练掌握,即可解题.15、如果,那么【解析】
根据否命题的定义,写出否命题即可.【详解】如果,那么故答案为:如果,那么.【点睛】本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.16、HL【解析】分析:需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.详解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为HL.点睛:本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.17、1【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.【点睛】本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18、【解析】
根据科学计数法的表示方法即可求解.【详解】解:将10310000科学记数法表示为.故答案为:.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.三、解答题(共78分)19、(1)12,16;(2)△ABC为直角三角形,理由见解析【解析】
(1)在直角三角形中,应用勾股定理求值即可;
(2)先计算出AC2+BC2=AB2,即可判断出△ABC为直角三角形.【详解】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16;(2)△ABC为直角三角形,理由:∵AD=16,BD=1,∴AB=AD+BD=16+1=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.【点睛】考查了勾股定理的应用,解题关键是熟记勾股定理以及勾股定理的逆定理.20、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时,当时,;(3)当或时满足.【解析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;(3)取时,作出函数图象,观察图象可得到结论.【详解】(1)证明:将和这两函数看成两个不定方程,联立方程组得:两边同时乘得,整理后得利用计算验证得:∵所以方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.联立方程组得:两边同时乘得,整理后得因为直线与双曲线有且只有一个交点,∴方程有且只有一个解,即:,将方程对应的值代入判别式得:解得综上所述:当时,,当时,,(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:计算可得交点坐标,要使,即函数的图象在函数图象的上方即可,由图可知,当或时函数的图象在函数,图象的上方,即当或时满足【点睛】本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.21、制作每个A型盒用0.1米材料,制作每个B型盒用0.5米材料.【解析】
设制作每个B型盒用x米材料,则制作每个A型盒用(1+20%)x米材料,根据数量=材料总数÷每个环保包装盒所需材料结合用3米同样的材料分别制成A型盒的个数比制成B型盒的个数少1个,即可得出关于x的分式方程,解方程并经检验后即可得出结论.【详解】设制作每个B型盒用x米材料,则制作每个A型盒用(1+20%)x米材料,依题意得:﹣=1,解得:x=0.5,经检验,x=0.5是所列分式方程的解,且符合题意,∴(1+20%)x=0.1.答:制作每个A型盒用0.1米材料,制作每个B型盒用0.5米材料.【点睛】本题考查分式方程的应用,正确得出题中等量关系是解题关键.22、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】
试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.试题解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直线y=bx+c的解析式为:y=2x+8,∵正方形OABC的对角线的交点D,且正方形边长为4,∴D(2,2);(2)存在,理由为:对于直线y=2x+8,当y=0时,x=-4,∴E点的坐标为(-4,0),根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线为y=2x+t,代入D点坐标(2,2),得:2=4+t,即t=-2,∴平移后的直线方程为y=2x-2,令y=0,得到x=1,∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,则t=5秒;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,∴PH=PQ,在△OPH和△MPQ中,,∴△OPH≌△MPQ(AAS),∴OH=QM,∵四边形CNPG为正方形,∴PG=BQ=CN,∴CP=PG=BM,即.考点:一次函数综合题.【详解】请在此输入详解!23、(1)详见解析(2)【解析】
(1)题干中由且可知,一组对边平行且相等的四边形是平行四边形,则四边形BCDE是平行四边形,又知BE是直角三角形斜边的中线,直角三角形斜边的中线等于斜边的一半,则得到BE=ED,从而再用一组邻边相等的平行四边形是菱形证明即可.(2)通过DE∥BC和AC平分,可得到∠BAC=∠ACB,从而由等角对等边得到AB=BC=1,则此时直角三角形ABD,有一个执教不是斜边的一半,则可知这个直角边对应的角是30°,找到30°才是题目的突破口,然后依次得到角度的关系,证明得到三角形ACD是直角三角形,再用勾股定理解得AC的长.【详解】(1)证明:∵DE∥BC且DE=BC(已知)∴四边形BCDE是平行四边形(一组对边平行且相等的四边形是平行四边形)又∵E为直角三角形斜边AD边的中点(已知)∴BE=AD,即BE=DE(直角三角形斜边的中线等于斜边的一半)∴平行四边形四边形BCDE是菱形(一组邻边相等的平行四边形是菱形)(2)连接AC,如图可知:∵DE∥BC(已知)∴∠DAC=∠ACB(两直线平行内错角相等)又∵AC平分(已知)∴∠BAC=∠DAC(角平分线的定义)即∠BAC=∠ACB(等量代换)∴AB=BC=1(等角对等边)由(1)可知:AD=2ED=2BC=2在直角三角形中AB=1,AD=2∴∠ADB=30°(直角三角形中,若一个直角边是斜边一半,则这个直角边所对的角是30°)∴∠BAD=60°(直角三角形两锐角互余)即∠CAD=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度软件定制开发合同某金融科技公司3篇
- 二零二四年度广告投放与合作合同2篇
- 二零二四年度煤炭批发销售合同2篇
- 2024年枇杷露行业投资分析:枇杷露行业投资现状持续扩大
- 商城系统定制开发(2024版)合同3篇
- 英语学术论文写作攻略
- 孕期味觉失常的临床护理
- 二零二四年度版权租赁合同范本2篇
- 医疗保健品双十一策略
- 2024年度专利实施许可合同范本许可方2024年专用3篇
- 泰康之家养老社区产品标准——关键点
- 冬季行车安全教育试卷(含答案)
- 生产与仓储循环--确定控制是否得到执行穿行测试
- 剪纸艺术进校园活动简报
- 浅谈小学数学教学中如何培养学生的核心素养
- 小学入门数独100题(简单)
- 谈数学课堂中倾听教育的策略(徐艳)
- 首都经济贸易大学本科毕业论文格式模板范文
- 毛丝产生要因分析及解决方案
- 经济管理决策与分析
- 最新农村土地复垦竣工验收表资料
评论
0/150
提交评论