湖南邵阳区六校联考2024年八年级数学第二学期期末教学质量检测试题含解析_第1页
湖南邵阳区六校联考2024年八年级数学第二学期期末教学质量检测试题含解析_第2页
湖南邵阳区六校联考2024年八年级数学第二学期期末教学质量检测试题含解析_第3页
湖南邵阳区六校联考2024年八年级数学第二学期期末教学质量检测试题含解析_第4页
湖南邵阳区六校联考2024年八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南邵阳区六校联考2024年八年级数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.直角三角形有两边的长分别是3、4,则剩下一边的长是()A.5 B. C.2 D.或52.如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为,则乘电梯从点到点上升的高度是()A. B. C. D.3.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)4.如图,在四边形中,,交于,平分,,下面结论:①;②是等边三角形;③;④,其中正确的有A.1个 B.2个 C.3个 D.4个5.如图,在中,,点是的中点,则下列结论不正确的是()A. B. C. D.6.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠37.化简的结果是().A. B. C. D.8.如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为()A.A+B=C+D B.A+C=B+DC.A+D=B+C D.以上都不对9.已知,多项式可因式分解为,则的值为()A.-1 B.1 C.-7 D.710.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想 C.方程思想 D.函数思想二、填空题(每小题3分,共24分)11.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则12.如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.13.如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.14.如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).15.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.16.分解因式:a3﹣2a2+a=________.17.乐乐参加了学校广播站招聘小记者的三项素质测试,成绩(百分制)如下:采访写作70分,计算机操作60分,创意设计80分.如果采访写作、计算机操作和创意设计的成绩按5:2:3计算,那么他的素质测试的最终成绩为__________________分.18.使函数有意义的的取值范围是________.三、解答题(共66分)19.(10分)计算:(1)(-)2-+(2)-×.20.(6分)在平面直角坐标系中,BC∥OA,BC=3,OA=6,AB=3.(1)直接写出点B的坐标;(2)已知D、E(2,4)分别为线段OC、OB上的点,OD=5,直线DE交x轴于点F,求直线DE的解析式;(3)在(2)的条件下,点M是直线DE上的一点,在x轴上方是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(6分)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.22.(8分)某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)请求出加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.23.(8分)市政某小组检修一条长的自来水管道,在检修了一半的长度后,提高了工作效率,每小时检修的管道长度是原计划的1.5倍,结果共用完成任务,求这个小组原计划每小时检修管道的长度.24.(8分)如图1在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线移动到点D时停止,出发时以a单位/秒匀速运动:同时点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止,出发时以b单位/秒运动,两点相遇后点P运动速度变为c单位/秒运动,点Q运动速度变为d单位/秒运动:图2是射线OP随P点运动在正方形ABCD中扫过的图形的面积y1与时间t的函数图象,图3是射线OQ随Q点运动在正方形ABCD中扫过的图形的面积y2与时间(1)正方形ABCD的边长是______.(2)求P,Q相遇后∠POQ在正方形中所夹图形面积S与时间t的函数关系式.25.(10分)用适当的方法解下列方程:(1)5x2=4x(2)(x+1)(3x﹣1)=026.(10分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

分两种情况讨论,3,4都是直角边长,或者4为斜边长,利用勾股定理解出剩下一边的长即可.【详解】①若3,4都是直角边长,则斜边=,②若4为斜边长,则剩下一条直角边=,综上,剩下一边的长是或1.故选D.【点睛】本题考查勾股定理,当无法确定直角边与斜边时,分类讨论是解题的关键.2、C【解析】

过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.【详解】解:过C作CM⊥AB于M,

∵∠ABC=150°,

∴∠CBM=180°-150°=30°,

在Rt△CBM中,

∵BC=10m,∠CBM=30°,

∴=sin∠CBM=sin30°=,

∴CM=BC=5m,

即从点B到点C上升的高度h是5m.

故选C.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.3、D【解析】

求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.4、C【解析】

由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,

∴四边形AECD是平行四边形,

∵AD=DC,

∴四边形AECD是菱形,

∴AE=EC=CD=AD,

∴∠EAC=∠ECA,

∵AE平分∠BAC,

∴∠EAB=∠EAC,

∴∠EAB=∠EAC=∠ECA,

∵∠ABC=90°,

∴∠EAB=∠EAC=∠ECA=30°,

∴BE=AE,AC=2AB,①正确;

∵AO=CO,

∴AB=AO,

∵∠EAB=∠EAC=30°,

∴∠BAO=60°,

∴△ABO是等边三角形,②正确;

∵四边形AECD是菱形,

∴S△ADC=S△AEC=AB•CE,

S△ABE=AB•BE,

∵BE=AE=CE,

∴S△ADC=2S△ABE,③错误;

∵DC=AE,BE=AE,

∴DC=2BE,④正确;

故选:C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.5、D【解析】

首先根据三角形斜边中线定理得出AD=BD=CD,即可判定C选项正确;又由∠A=∠ACD,∠CDB=∠A+∠ACD,即可判定A选项正确;由点是的中点,得出AD=BD,进而得出,又由,列出关系式,即可判定B选项正确;根据勾股定理,即可判定D选项错误.【详解】根据直角三角形斜边中线定理,得AD=BD=CD∴,C选项正确;∴∠A=∠ACD又∵∠CDB=∠A+∠ACD∴,A选项正确;∵点是的中点,∴AD=BD∴又∵∴∴,B选项正确;根据勾股定理,得,D选项错误;故答案为D.【点睛】此题主要考查直角三角形的性质,运用了斜边中线定理和勾股定理,熟练运用,即可解题.6、A【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.考点:函数自变量的取值范围,二次根式和分式有意义的条件.7、B【解析】

根据三角形法则计算即可解决问题.【详解】解:原式,故选:B.【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.8、A【解析】分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.故选A.点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9、B【解析】

根据因式分解与整式的乘法互为逆运算,把利用乘法公式展开,即可求出m的值.【详解】=又多项式可因式分解为∴m=1故选B【点睛】此题考查了因式分解的意义,用到的知识点是因式分解与整式的乘法互为逆运算,是一道基础题.10、B【解析】

分式方程去分母转化为整式方程,故利用的数学思想是转化思想.【详解】解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想.故选B.【点睛】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、1【解析】∵x>5∴x相当于已知调和数1,代入得,1312、2≤MN≤5【解析】

根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.【详解】∵点P,M分别是CD,DE的中点,∴PM=CE,PM∥CE,∵点P,N分别是DC,BC的中点,∴PN=BD,PN∥BD,∵△ABC,△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∴PM=PN=BD,∴MN=BD,∴点D在AB上时,BD最小,∴BD=AB-AD=4,MN的最小值2;点D在BA延长线上时,BD最大,∴BD=AB+AD=10,MN的最大值为5,∴线段MN的取值范围是2≤MN≤5.故答案为:2≤MN≤5.【点睛】此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.13、1.【解析】

根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.【详解】∵AF⊥BF,∴∠AFB=90°,∵AB=6,D为AB中点,∴DF=AB=AD=BD=3,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴,即解得:DE=4,∴EF=DE-DF=1,故答案为:1.【点睛】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.14、①②④【解析】

根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为①②④.【点睛】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.15、【解析】

先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为:.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.16、a(a﹣1)1【解析】试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.考点:提公因式法与公式法的综合运用.17、71【解析】

根据加权平均数的定义计算可得.【详解】他的素质测试的最终成绩为=71(分),故答案为:71分.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.18、且【解析】

根据被开方数是非负数且分母不能为零,可得答案.【详解】解:由题意,得解得x>-3且.

故答案为:x>-3且.【点睛】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.三、解答题(共66分)19、(1)1.(2).【解析】

1)先根据二次根式的性质化简,然后合并即可;(2)先根据二次根式的乘除法则运算,然后合并即可.【详解】解:(1)原式=6-5+3=1;(2)原式===.考点:二次根式的混合运算.20、(1)B(3,6);(2)y=﹣x+5;(3)点N坐标为(4,8)或(﹣5,2.5)或(﹣2,)..【解析】

(1)过B作BG⊥OA于点G,在Rt△ABG中,利用勾股定理可求得BG的长,则可求得B点坐标;

(2)由条件可求得D点坐标,利用待定系数法可求得直线DE的解析式;

(3)当OD为边时,则MO=OD=5或MD=OD=5,可求得M点坐标,由MN∥OD,且MN=OD可求得N点坐标;当OD为对角线时,则MN垂直平分OD,则可求得M、N的纵坐标,则可求得M的坐标,利用对称性可求得N点坐标.【详解】解:(1)如图1,过B作BG⊥OA于点G,∵BC=3,OA=6,∴AG=OA﹣OG=OA﹣BC=6﹣3=3,在Rt△ABG中,由勾股定理可得AB2=AG2+BG2,即(3)2=32+BG2,解得BG=6,∴OC=6,∴B(3,6);(2)由OD=5可知D(0,5),设直线DE的解析式是y=kx+b把D(0,5)E(2,4)代入得,解得:,∴直线DE的解析式是y=﹣x+5;(3)当OD为菱形的边时,则MN=OD=5,且MN∥OD,∵M在直线DE上,∴设M(t,﹣t+5),①当点N在点M上方时,如图2,则有OM=MN,∵OM2=t2+(﹣t+5)2,∴t2+(﹣t+5)2=52,解得t=0或t=4,当t=0时,M与D重合,舍去,∴M(4,3),∴N(4,8);②当点N在点M下方时,如图3,则有MD=OD=5,∴t2+(﹣t+5﹣5)2=52,解得t=2或t=﹣2,当t=2时,N点在x轴下方,不符合题意,舍去,∴M(﹣2,+5),∴N(﹣2,);当OD为对角线时,则MN垂直平分OD,∴点M在直线y=2.5上,在y=﹣x+5中,令y=2.5可得x=5,∴M(5,2.5),∵M、N关于y轴对称,∴N(﹣5,2.5),综上可知存在满足条件的点N,其坐标为(4,8)或(﹣5,2.5)或(﹣2,).【点睛】一次函数的综合应用,涉及勾股定理、待定系数法、菱形的性质、分类讨论及方程思想.在(2)中求得E点坐标是解题的关键,在(3)中求得M点的坐标是解题的关键,注意分类讨论.21、见解析【解析】

解:结论:四边形ABCD是平行四边形证明:∵DF∥BE∴∠AFD=∠CEB又∵AF=CEDF=BE,∴△AFD≌△CEB(SAS)∴AD=CB∠DAF=∠BCE∴AD∥CB∴四边形ABCD是平行四边形22、(1)5小时,24L;(2)Q=42-6t;(3)见解析.【解析】

(1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;

(2)根据待定系数法,可得函数解析式;

(3)根据单位耗油量乘以行驶时间,可得行驶路程,根据有理数的大小比较,可得答案.【详解】解:(1)由横坐标看出,5小时后加油,由纵坐标看出,加了36-12=24(L)油;

(2)设解析式为Q=kt+b,将(0,42),(5,12)代入函数解析式,得,

解得,

故函数解析式为Q=42-6t(0≤t≤5);

(3)够用,理由如下

单位耗油量为=6L/h,

∴6×40-230=240-230=10>0,

还可以再行驶10千米,

故油够用.【点睛】本题考查了函数图象,观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键,也考查了利用待定系数法求函数解析式.23、这个小组原计划每小时检修管道长度为1m.【解析】

首先设这个小组原计划每小时检修管道长度为xm,然后根据题意可列出方程,解得即可.【详解】解:设这个小组原计划每小时检修管道长度为xm.由题意,得,解得x=1.经检验:x=1是原方程的解,且符合题意.答:这个小组原计划每小时检修管道长度为1m.【点睛】此题主要考查分式方程的实际应用,关键是找出关系式,即可解题.24、(1)6;(2)见详解.【解析】

(1)从图3中可以看出射线OQ前面6秒扫过的面积为9,则可以得到12×12AD∙AD=9(2)仔细观察函数图象可知点P点Q是在点C处相遇,并由(1)中得到的正方形边长可求得,相遇前后P,Q的速度,再画出图形列出式子求解即可.【详解】解:(1)由图3可知△OCD的面积=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论