广东省普宁市华南实验学校2024届数学八年级下册期末监测模拟试题含解析_第1页
广东省普宁市华南实验学校2024届数学八年级下册期末监测模拟试题含解析_第2页
广东省普宁市华南实验学校2024届数学八年级下册期末监测模拟试题含解析_第3页
广东省普宁市华南实验学校2024届数学八年级下册期末监测模拟试题含解析_第4页
广东省普宁市华南实验学校2024届数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省普宁市华南实验学校2024届数学八年级下册期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是().A.x2 B.x2或1x0C.1x0 D.x2或x12.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A. B. C. D.3.如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-54.一个多边形的每个内角均为108°,则这个多边形是()边形.A.4 B.5 C.6 D.75.通过估算,估计的大小应在()A.7~8之间 B.8.0~8.5之间C.8.5~9.0之间 D.9~10之间6.若关于x的分式方程有增根,则k的值是()A. B. C.2 D.17.某批发部对经销的一种电子元件调查后发现,一天的盈利y(元)与这天的销售量x(个)之间的函数关系的图像如图所示下列说法不正确的是().A.一天售出这种电子元件300个时盈利最大B.批发部每天的成本是200元C.批发部每天卖100个时不赔不赚D.这种电子元件每件盈利5元8.已知,在平面直角坐标系xOy中,点A(-4,0),点B在直线y=x+2上.当A、B两点间的距离最小时,点B的坐标是()A.(,) B.(,) C.(-3,-1) D.(-3,)9.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对10.如图,直线y=2x+4与x轴,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰ΔOBC,将ΔOBC沿y轴折叠,使点C恰好落在直线AB上,则点C的坐标为()A.(1,2) B.(4,2) C.(3,2) D.(-1,2)11.当x=-3时,二次根式6-x的值为()A.3 B.-3 C.±3 D.312.下列二次根式是最简二次根式的是(

)A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.14.若a、b,c为三角形的三边,则________。15.如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为.16.已知关于的一元二次方程的一个根是2,则______.17.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为_____.18.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).三、解答题(共78分)19.(8分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.(1)求证:①≌;②;(2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;(3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.20.(8分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.21.(8分)如图,在四边形是边长为4的正方形点P为OA边上任意一点(与点不重合),连接CP,过点P作,且,过点M作,交于点联结,设.(1)当时,点的坐标为(,)(2)设,求出与的函数关系式,写出函数的自变量的取值范围.(3)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用的式子表示)22.(10分)如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.23.(10分)如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.24.(10分)如图,矩形ABCD中,AB4,BC10,E在AD上,连接BE,CE,过点A作AG//CE,分别交BC,BE于点G,F,连接DG交CE于点H.若AE2,求证:四边形EFGH是矩形.25.(12分)如图,G是线段AB上一点,AC和DG相交于点E.(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.26.已知,一次函数y=(1-3k)x+2k-1,试回答:(1)k为何值时,y随x的增大而减小?(2)k为何值时,图像与y轴交点在x轴上方?(3)若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据交点坐标及图象的高低即可判断取值范围.【详解】要使,则一次函数的图象要高于反比例函数的图象,∵两图象交于点A(2,1)、B(-1,-2),∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,∴使的x的取值范围是:或.故选:B.【点睛】本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.2、C【解析】

根据中心对称图形的定义和图案特点即可解答.【详解】解:A、不是中心对称图形,故本选项错误;

B、不是中心对称图形,故本选项错误;

C、是中心对称图形,故本选项正确;

D、不是中心对称图形,故本选项错误.

故选:C.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3、B【解析】

根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,

则x1=−5,x2=5(舍去).

故选:B.【点睛】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.4、B【解析】

首先求得外角的度数,然后利用360除以外角的度数即可求解.【详解】外角的度数是:180-108=72°,

则这个多边形的边数是:360÷72=1.故选B.5、C【解析】

先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.【详解】解:∵64<1<81,∴89,排除A和D,又∵8.52=72.25<1.故选C.6、D【解析】

方程两边同乘以x-5可化为x-6+(x-5)=-k,由关于x的分式方程有增根可得x=5,把x=5代入x-6+(x-5)=-k即可求得k值.【详解】方程两边同乘以x-5得,x-6+(x-5)=-k,∵关于x的分式方程有增根,∴x=5,把x=5代入x-6+(x-5)=-k得,5-6=-kk=1.故选D.【点睛】本题考查了分式方程的增根,熟知使分式方程最简公分母等于0的未知数的值是分式方程的增根是解决问题的关键.7、D【解析】分析:根据一次函数的图形特征,一一判断即可.详解:根据图像可知售出这种电子元件300个时盈利最大,故A正确.当售出这种电子元件0个时,利润为-200,故每天的成本为200元,故B正确.当售出这种电子元件100个时,利润为0元,故每天卖100个时不赔不赚,故C正确.当出售300个的利润为400元,所以每个的利润为元,故D错误.点睛:本题是用图像表示变量间关系的问题,结合题意读懂图像是解题的关键.8、C【解析】分析:根据题意画出图形,过点A做AB⊥直线y=x+2于2点B,则点B即为所求点,根据锐角三角函数的定义得出∠OCD=45°,故可判断出△ABC是等腰直角三角形,进而可得出B点坐标.详解:如图,过点A作AB⊥直线y=x+2于点B,则点B即为所求.∵C(﹣2,0),D(0,2),∴OC=OD,∴∠OCD=45°,∴△ABC是等腰直角三角形,∴B(﹣3,1).故选C.本题考查的是一次函数图象上点的坐标特点,根据题意画出图形,利用数形结合求解是解本题的关键.9、B【解析】

由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;

②当4为腰时,符合题意,则周长是2+4+4=1.

故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.10、A【解析】

由直线y=2x+4与y轴交于点B,可得OB=4,再根据△OBC是以OB为底的等腰三角形,可得点C的纵坐标为2,依据△OBC沿y轴折叠,使点C恰好落在直线AB上,即可得到点C的横坐标为1.【详解】解:∵直线y=2x+4与y轴交于点B,∴B(0,4),∴OB=4,又∵△OBC是以OB为底的等腰三角形,∴点C的纵坐标为2,∵△OBC沿y轴折叠,使点C恰好落在直线AB上,∴当y=2时,2=2x+4,解得x=-1,∴点C的横坐标为1,∴点C的坐标为(1,2),故选:A.【点睛】本题考查了等腰三角形的性质、翻折变换的性质、一次函数的性质;熟练掌握翻折变换和等腰三角形的性质是解决问题的关键.11、A【解析】

把x=-3代入二次根式进行化简即可求解.【详解】解:当x=-3时,6-x=故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.12、C【解析】

根据最简二次根式的定义对每个选项进行判断即可.【详解】解:A.,故原选项不是最简二次根式;B.,故原选项不是最简二次根式;C.是最简二次根式;D.=4,故原选项不是最简二次根式.故选C.【点睛】本题考点:最简二次根式.二、填空题(每题4分,共24分)13、1【解析】

根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.【详解】根据折叠的性质知:BP=BC,∴BN=BC=BP,∵∠BNP=90°,∴∠BPN=1°,故答案为:1.【点睛】本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.14、2a【解析】

根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.【详解】∵a,b,c是三角形的三边,三角形任意两边之和大于第三边,任意两条边之差小于第三边,∴a+b-c>0,b-c-a<0,所以==.【点睛】本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.15、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.由图象可知,此时.16、1【解析】

根据关于x的一元二次方程x2−2ax+3a=0有一个根为2,将x=2代入方程即可求得a的值.【详解】解:∵关于x的一元二次方程x2−2ax+3a=0有一个根为2,∴22−2a×2+3a=0,解得,a=1,故答案为1.【点睛】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可解决问题.17、1【解析】

先求出每次延长后的面积,再发现规律即可求解.【详解】解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=1.故答案为:1.【点睛】此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.18、乙.【解析】

根据方差反应了数据的波动情况,即可完成作答。【详解】解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。【点睛】本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。三、解答题(共78分)19、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.【解析】

(1)①根据中点和平行即可找出条件证明全等.②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.(2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.(3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.【详解】(1)①∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.∵AD=CD,∴△ADF≌△CDE.②由△ADF≌△CDE,∴AF=CE.∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.(2)四边形AFCE是矩形.∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.【点睛】此题考查三角形全等,特殊平行四边形的判定及性质,难度中等.20、(1)△CDF是等腰三角形;(2)∠APD=45°.【解析】

(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【详解】(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.21、(1)点的坐标为;(2);(3),,,【解析】

(1)过点作,由“”可证,可得,,即可求点坐标;(2)由(1)可知,设OP=x,则可得M点坐标为(4+x,x),由直线OB解析式可得N(x,x),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形是平行四边形,进而可求与的函数关系式;(3)首先画出符合要求的点的图形,共分三种情况,第一种情况:当为底边时,第二种情况:当M为顶点为腰时,第三种情况:当N为顶点为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答.【详解】解:(1)如图,过点作,,且,且,,点坐标为故答案为(2)由(1)可知,点坐标为四边形是边长为4的正方形,点直线的解析式为:,交于点,点坐标为,且四边形是平行四边形(3)在轴正半轴上存在点,使得是等腰三角形,此时点的坐标为:,,,,,,其中,理由:当(2)可知,,,轴,所以共分为以下几种请:第一种情况:当为底边时,作的垂直平分线,与轴的交点为,如图2所示,,第二种情况:如图3所示,当M为顶点为腰时,以为圆心,的长为半径画弧交轴于点、,连接、,则,,,,,,,,;第三种情况,当以N为顶点、为腰时,以为圆心,长为半径画圆弧交轴正半轴于点,当时,如图4所示,则,,即,.当时,则,此时点与点重合,舍去;当时,如图5,以为圆心,为半径画弧,与轴的交点为,.的坐标为:,.,,所以,综上所述,,,,,,,使是等腰三角形.【点睛】本题考查四边形综合题,解题的关键是明确题意,画出相应的图象,找出所求问题需要的条件,利用数形结合的思想解答问题.22、见解析【解析】

根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵AE=CF,∴四边形AECF为平行四边形,∴AF=CE.【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23、(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)t为秒时,四边形EGFH是菱形.【解析】

(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=1.AE+CF-AC=1两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=1cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=AB,CH=CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=1cm,∴当EF=GH=1cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=1,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=1,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=1-x,由勾股定理得:AB2+BG2=AG2,即62+(1-x)2=x2,解得:x=,∴BG=1-=,∴AB+BG=6+=,t=÷2=,即t为秒时,四边形EGFH是菱形.【点睛】本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.24、证明见解析.【解析】

根据四边形ABCD是矩形以及AG//CE,得到四边形AECG是平行四边形,从而得到四边形BEDG是平行四边形,即可得到四边形EFGH是平行四边形,再根据勾股定理求出BE,CE长,由勾股定理的逆定理得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论