浙江省宁波市镇海区仁爱中学2024届八年级下册数学期末考试模拟试题含解析_第1页
浙江省宁波市镇海区仁爱中学2024届八年级下册数学期末考试模拟试题含解析_第2页
浙江省宁波市镇海区仁爱中学2024届八年级下册数学期末考试模拟试题含解析_第3页
浙江省宁波市镇海区仁爱中学2024届八年级下册数学期末考试模拟试题含解析_第4页
浙江省宁波市镇海区仁爱中学2024届八年级下册数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市镇海区仁爱中学2024届八年级下册数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣ B. C.﹣2 D.22.已知一次函数,若随的增大而减小,则该函数的图像经过()A.第一、二、三象限 B.第二、三、四象限C.第一、二、四象限 D.第一、三、四象限3.计算的结果是()A. B. C. D.4.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()A. B.C. D.5.如图,在Rt△ABC中,∠A=30°,BC=2,点D,E分别是直角边BC,AC的中点,则DE的长为()A.2 B.3 C.4 D.6.分式有意义,则的取值范围为()A. B. C.且 D.为一切实数7.如图,在矩形中,动点从点开始沿的路径匀速运动到点停止,在这个过程中,的面积随时间变化的图象大致是()A. B.C. D.8.矩形的长为x,宽为y,面积为8,则y与x之间的函数关系用图象表示大致为()A. B.C. D.9.如图,正方形中,点是对角线上的一点,且,连接,,则的度数为()A.20° B.22.5° C.25° D.30°10.一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.311.下面哪个点在函数y=2x+4的图象上()A.(2,1) B.(-2,1) C.(2,0) D.(-2,0)12.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.28二、填空题(每题4分,共24分)13.数据2,0,1,9的平均数是__________.14.在实数范围内分解因式:5-x2=_____.15.如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.16.关于一元二次方程的一个根为,则另一个根为__________.17.合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是.18.将直线向上平移1个单位,那么平移后所得直线的表达式是_______________三、解答题(共78分)19.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:本数(本)人数(人数)百分比5a0.26180.36714b880.16合计c1根据以上提供的信息,解答下列问题:(1)a=_____,b=_____,c=______;(2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?20.(8分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,求菱形的面积及线段DH的长.21.(8分)因式分解:am2﹣6ma+9a.22.(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=4,∠BCD=120°,求四边形AODE的面积.23.(10分)如图,等腰直角中,,点在上,将绕顶点沿顺时针方向旋转90°后得到.(1)求的度数;(2)当,时,求的大小;(3)当点在线段上运动时(不与,重合),求证:.24.(10分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲乙(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?25.(12分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.26.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.【详解】把(2,1)代入y=kx得2k=1,解得k=.故选B.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.2、C【解析】

根据题意判断k的取值,再根据k,b的符号正确判断直线所经过的象限.【详解】解:若y随x的增大而减小,则k<0,即-k>0,故图象经过第一,二,四象限.

故选C.【点睛】本题考查的是一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.3、A【解析】

根据二次根式性质求解.【详解】根据得=3故答案为:A【点睛】考核知识点:算术平方根性质.理解定义是关键.4、D【解析】

根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。【详解】解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长为2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴,则2xy=4S,即(x+y)2=4d2+4S,∴∴这个三角形周长为:,故选:D.【点睛】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5、A【解析】

根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:在Rt△ABC中,∠A=30°,∴AB=2BC=4,∵D,E分别是直角边BC,AC的中点,∴,故选:D.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,三角形的中位线平行于第三边,且等于第三边的一半.6、B【解析】

直接利用分式有意义则分母不等于零进而得出答案.【详解】分式有意义,

则x-1≠0,

解得:x≠1.

故选:B.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.7、B【解析】

根据三角形的面积可知当P点在AB上时,的面积随时间变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,的面积随时间变大而变小.【详解】解:当P点在AB上时,的面积=,则的面积随时间变大而变大;当P点在AD上时,的面积=,则的面积不会发生改变;当P点在CD上时,的面积=,则的面积随时间变大而变小,且函数图象的斜率应与P点在AB上时相反;综上可得B选项的图象符合条件.故选B.【点睛】本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.8、C【解析】

根据矩形面积计算公式即可解答.【详解】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选:C.【点睛】本题考查矩形的面积计算公式,注意x,y的取值范围是解题关键.9、B【解析】

根据正方形的性质可得∠CAD=45°,根据等腰三角形的性质可得∠ADE的度数,根据∠CDE=90°-∠ADE即可得答案.【详解】∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵AE=AB,AB=AD,∴AE=AD,∴∠ADE=∠AED=67.5°,∵∠ADC=90°,∴∠CDE=∠ADC-∠ADE=90°-67.5°=22.5°.故选B.【点睛】本题考查了正方形的性质及等腰三角形的性质,正方形四边都相等,四个角都为90°,对角线互相垂直平分,并且平分每一组对角.熟练掌握相关性质是解题关键.10、D【解析】

解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.【点睛】本题考查一次函数的图象及一次函数与不等式.11、D【解析】

将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【详解】A、将(2,1)代入解析式y=2x+4得,2×2+4=8≠1,故本选项错误;B、将(-2,1)代入解析式y=2x+4得,2×(-2)+4=0≠1,故本选项错误;C、将(2,0)代入解析式y=2x+1得,2×2+4=8≠0,故本选项错误;D、将(-2,0)代入解析式y=2x+1得,2×(-2)+4=0,故本选项正确;故选D.【点睛】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.12、D【解析】

首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.【详解】解:四边形是菱形,,,菱形的周长为24,,,,,,,菱形的面积三角形的面积,故选D.【点睛】本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.二、填空题(每题4分,共24分)13、1【解析】

根据算术平均数的定义计算可得.【详解】数据2,0,1,9的平均数是=1,

故答案是:1.【点睛】考查算术平均数,解题的关键是掌握算术平均数的定义.14、(+x)(-x)【解析】

理解实数范围内是要运算到无理数为止,即可解题.【详解】解:5-x2=(+x)(-x)【点睛】本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.15、1【解析】

根据直角三角形斜边上的中线是斜边的一半可以解答本题.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,∴∠CDA=90°,△ADC是直角三角形,∴AC=2DE,∵DE=5,∴AC=1,故答案为:1.【点睛】本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.16、1【解析】

利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.【详解】∵a=1,b=m,c=-1,

∴x1•x2==-1.

∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,

∴另一个根为-1÷(-1)=1.

故答案为:1.【点睛】此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.17、.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵坐到1,2,3号的坐法共有6种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有2种方法(CBD、DBC)B坐在2号座位,∴B坐在2号座位的概率是.18、【解析】

平移时k的值不变,只有b发生变化.【详解】原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,那么新直线的k=2,b=0+1=1,∴新直线的解析式为y=2x+1.故答案为:y=2x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.三、解答题(共78分)19、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.【解析】

(1)根据统计图和表格中的数据可以得到a、b、c的值;(2)根据(1)中a的值,可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.【详解】解:(1)本次调查的学生有:18÷0.36=50(人),a=50×0.2=10,b=14÷50=0.28,c=50,故答案为:10、0.28、50;(2)由(1)知,a=10,补全的条形统计图如图所示;(3)∵1200×(0.28+0.16)=528(名),∴该校八年级学生课外阅读7本及以上的有528名.【点睛】本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20、【解析】

先根据菱形的面积等于对角线乘积的一半求出菱形的面积,然后再根据勾股定理求出菱形的边长,利用菱形面积的以一求解方法,边长乘高即可求得DH的长.【详解】在菱形ABCD中,AC⊥BD,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,S菱形ABCD=,∴AB==13,∵S菱形ABCD=AB·DH=120,∴DH=.【点睛】本题考查了菱形的性质、勾股定理、菱形的面积等,注意菱形的面积等于对角线乘积的一半,也等于底乘高.21、a(m﹣3)1.【解析】

先提取公因式,再利用完全平方公式分解因式即可解答【详解】原式=a(m1﹣6m+9)=a(m﹣3)1.【点睛】此题考查提公因式法和公式法的综合运用,解题关键在于熟练掌握运算法则22、(1)详见解析;(2)矩形AODE面积为【解析】

(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;(2)证明△ABC是等边三角形,得出OA=×4=2,由勾股定理得出OB=2,由菱形的性质得出OD=OB=2,即可求出四边形AODE的面积.【详解】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴平行四边形AODE是矩形,故四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°-120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×4=2,∵在菱形ABCD中,AC⊥BD∴由勾股定理OB==2,∵四边形ABCD是菱形,∴OD=OB=2,∴四边形AODE的面积=OA•OD=2=4.【点睛】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.23、(1);(1);(3)见解析.【解析】

(1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°;(1)利用勾股定理得出AC的长,再利用旋转的性质得出AP=CQ,求得PC的长度,进而利用勾股定理得出PQ的长;(3)先证明△PBQ也是等腰直角三角形,从而得到PQ1=1PB1=PA1+PC1.【详解】(1)∵△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ,∴,∴,∴.(1)当时,有,,,∴.(3)由(1)可得,,,,∴是等腰直角三角形,是直角三角形.∴,∵,∴,故有.【点睛】考查了旋转的性质以及勾股定理和等腰直角三角形的性质等知识,得出旋转前后对应线段之间关系是解题关键.24、(1),;(2)乙种水果销量比较稳定.【解析】

(1)根据平均数的公式计算即可.(2)根据方差公式计算,再根据方差的意义“方差越小越

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论