黑龙江省哈尔滨光华中学2024年八年级下册数学期末经典模拟试题含解析_第1页
黑龙江省哈尔滨光华中学2024年八年级下册数学期末经典模拟试题含解析_第2页
黑龙江省哈尔滨光华中学2024年八年级下册数学期末经典模拟试题含解析_第3页
黑龙江省哈尔滨光华中学2024年八年级下册数学期末经典模拟试题含解析_第4页
黑龙江省哈尔滨光华中学2024年八年级下册数学期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨光华中学2024年八年级下册数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列函数中,一次函数是()A.y=x B.y=kx C.y=1x2.已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,3.如图,矩形的周长是28,点是线段的中点,点是的中点,的周长与的周长差是2(且),则的周长为()A.12 B.14 C.16 D.184.已知等腰三角形两边长为3和7,则周长为().A.13 B.17 C.13或17 D.115.不能被()整除.A.80 B.81 C.82 D.836.下列边长相等的正多边形的组合中,不能镶嵌平面的是()A.正三角形和正方形 B.正三角形和正六边形C.正方形和正八边形 D.正五边形和正方形7.如图,平行四边形,对角线交于点,下列选项错误的是()A.互相平分B.时,平行四边形为矩形C.时,平行四边形为菱形D.时,平行四边形为正方形8.如图,已知平行四边形中,则()A. B. C. D.9.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤210.如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是()A.①② B.②③ C.①②④ D.①②③④11.下列各式中,能用完全平方公式分解因式的是()A. B. C. D.12.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9二、填空题(每题4分,共24分)13.已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标___.14.某种细菌的直径约为0.00000002米,用科学记数法表示该细菌的直径约为____米.15.如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.16.分解因式:a2-4=________.17.将直线y=7x向下平移2个单位,所得直线的函数表达式是________.18.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.三、解答题(共78分)19.(8分)用适当的方法解方程.(1)(2)20.(8分)问题提出:(1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.问题探究:(2)如图3,在(1)的条件下,若,,且,,①求的度数.②过点A作直线,交直线于点E,.请求出线段的长.21.(8分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.22.(10分)关于x的一元二次方程有两个不等实根,.(1)求实数k的取值范围;(2)若方程两实根,满足,求k的值.23.(10分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.(1)如图一,当点O在RtΔABC内部时.①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.24.(10分)如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=时的函数值.25.(12分)已知y-2和x成正比例,且当x=1时,当y=4。(1)求y与x之间的函数关系式;(2)若点P(3,m)在这个函数图象上,求m的值。26.已知,求的值.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据一次函数的定义即可判断.【详解】解:A、是一次函数;B、x的系数不是非零常数,故不是一次函数;C、x在分母上,故不是一次函数;D、x的指数为2,故不是一次函数.故选A.【点睛】本题考查了一次函数的定义.2、D【解析】

根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.3、A【解析】

设AB=n,BC=m,构建方程组求出m,n,利用勾股定理求出AC,利用三角形中位线定理求出OP即可解决问题.【详解】解:设AB=n,BC=m,由题意:,∴,∵∠B=90°,∴,∵AP=PD=4,OA=OC=5,∴OP=CD=3,∴△AOP的周长为3+4+5=12,故选A.【点睛】本题考查矩形的性质,勾股定理,三角形的中位线定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.4、B【解析】根据三角形的三边关系两边之和大于第三边进行判断,两腰不能是3,只能是7,周长为7+7+3=175、D【解析】

先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D.【点睛】本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.6、D【解析】

首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.【详解】解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,m=4-6故选D.【点睛】本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.7、D【解析】

根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.【详解】A选项,根据平行四边形对角线互相平分的性质,即可判定正确;B选项,对角线相等的平行四边形是矩形,正确;C选项,对角线互相垂直的平行四边形为菱形,正确;D选项,并不能判定其为正方形;故答案为D.【点睛】此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题.8、B【解析】

由平行四边形的邻角互补得到的度数,由平行四边形的对角相等求.【详解】解:因为:平行四边形,所以:,,又因为:所以:,解得:,所以:.故选B.【点睛】本题考查的是平行四边形的性质,掌握平行四边形的角的性质是解题关键.9、B【解析】

直接利用函数图象判断不等式kx+3>0的解集在x轴上方,进而得出结果.【详解】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.【点睛】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.10、D【解析】

过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到,,求得,得到,于是得到,故④正确.【详解】解:过O作于G,于H,∵四边形是正方形,,,,∵点O是对角线BD的中点,,,,,,,,∴四边形是正方形,,,,在与中,,,,故①正确;,,,故②正确;,∴四边形的面积正方形的面积,∴四边形的面积保持不变;故③正确;,,,,,,,,故④正确;故选:.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.11、A【解析】分析:完全平方公式是指:,根据公式即可得出答案.详解:.故选A.点睛:本题主要考查的完全平方公式,属于基础题型.理解公式是解决这个问题的关键.12、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.二、填空题(每题4分,共24分)13、(,0);【解析】

如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,求出直线的解析式,即可解决问题.【详解】如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,设最小的解析式为,则有,解得,直线的解析式为,令,得到,.故答案为:.【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.14、【解析】试题解析:0.00000002=2×10-8.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.15、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】

先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则16、(a+2)(a-2);【解析】

有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】解:a2-4=(a+2)(a-2).故答案为:(a+2)(a-2).考点:因式分解-运用公式法.17、y=7x-2【解析】

根据一次函数平移口诀:上加下减,左加右减,计算即可.【详解】将直线y=7x向下平移2个单位,则y=7x-2.【点睛】本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.18、−1<x<2.【解析】

根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题(共78分)19、(1);(2),【解析】

(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后求出b2﹣4ac的值,再代入公式求出即可.【详解】解:(1).∴.∴.(2)∴,.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.20、(1)30°;(2)①;②【解析】

(1)由旋转的性质,得△ABD≌,则,然后证明是等边三角形,即可得到;(2)①将绕点A逆时针旋转,使点B与点C重合,得到,连接.与(1)同理证明为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出,再由等边三角形的性质,即可求出答案.【详解】解:(1)根据题意,∵,,∴是等腰直角三角形,∴,∵,∴,由旋转的性质,则△ABD≌,∴,,,∴,∴是等边三角形,∴,∵,,∴≌,∴,∴;(2)①,.如图1,将绕点A逆时针旋转,使点B与点C重合,得到,连接.,,,,,..,为等边三角形,,,,,.②如图2,由①知,,在中,,.是等边三角形,,,.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.21、(1)y=x+1;(2)见解析.【解析】

(1)设一次函数的解析式是y=kx+b,把A(0,1)、B(2,4)代入得出方程组,求出方程组的解即可;

(2)过A、B作直线即可;【详解】(1)解:设一次函数的解析式是y=kx+b,

∵把A(0,1)、B(2,4)代入得:解得:k=0.5,b=1,

∴一次函数的解析式是y=x+1.(2)解:如图【点睛】本题考查用待定系数法求一次函数的解析式,一次函数的图象画法等知识的应用,解题关键是熟练掌握一次函数的性质.22、(1)k<;(2)k=1.【解析】

(1)根据一元二次方程的根的判别式得出△>1,求出不等式的解集即可;

(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=1,即可求出k值.【详解】解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=1有两个不等实根x1,x2,

∴△=(2k-1)2-4×1×k2=-4k+1>1,

解得:k<,

即实数k的取值范围是k<;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,

∵x1+x2+x1x2-1=1,

∴1-2k+k2-1=1,

∴k2-2k=1∴k=1或2,

∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,

∴k=1.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.23、(1)①补全图形,如图一,见解析;②猜想DE=BC.证明见解析;(2)∠AED=30°或15°.【解析】

(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【详解】(1)①补全图形,如图一,②猜想DE=BC.如图,连接OD交BC于点F,连接AF在△BDF和△COF中,∠DBF=∠OCF∴△BDF≌ΔCOF∴DF=OF,BF=CF∴F分别为BC和DO的中点∵∠BAC=90°,F为BC的中点,∴AF=12∵OA=AE,F为BC的中点,∴AF=12∴DE=BC(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论