2024年浙江省杭州余杭区八年级下册数学期末达标检测试题含解析_第1页
2024年浙江省杭州余杭区八年级下册数学期末达标检测试题含解析_第2页
2024年浙江省杭州余杭区八年级下册数学期末达标检测试题含解析_第3页
2024年浙江省杭州余杭区八年级下册数学期末达标检测试题含解析_第4页
2024年浙江省杭州余杭区八年级下册数学期末达标检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省杭州余杭区八年级下册数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若分式方程有增根,则m等于()A.-3 B.-2 C.3 D.22.如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4B.5C.4或5D.3或53.反比例函数y=-3x的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是(

A.b>c

B.b=c

C.b<c

D.不能确定4.在中,若,则()A. B. C. D.5.等于()A. B. C.3 D.6.若解关于x的方程有增根,则m的值为()A.﹣5 B.5 C.﹣2 D.任意实数7.如图,中,与关于点成中心对称,连接,当()时,四边形为矩形.A. B.C. D.8.下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3 B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3 D.三个角满足关系∠B+∠C=∠A9.如图,函数与的图象交于点,那么关于x,y的方程组的解是A. B. C. D.10.一次函数的图象如图所示,点在函数的图象上则关于x的不等式的解集是A. B. C. D.二、填空题(每小题3分,共24分)11.在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?12.一组数据5、7、7、x中位数与平均数相等,则x的值为________.13.如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.14.如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,CF=8,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A',D'处,当点D'落在直线BC上时,线段AE15.化简:32-316.已知与成正比例关系,且当时,,则时,_______.17.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.18.如图,在四边形中,,,,,且,则______度.三、解答题(共66分)19.(10分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为;(2)补全频数分布直方图;(3)在这次抽样调查中,众数是天,中位数是天;(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)20.(6分)某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.21.(6分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了多少名学生?(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;(3)请将条形统计图补充完整.22.(8分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分)456789甲组(人)125214乙组(人)114522(1)请你根据上述统计数据,把下面的图和表补充完整;一分钟投篮成绩统计分析表:统计量平均分方差中位数合格率优秀率甲组2.56680.0%26.7%乙组6.81.7686.7%13.3%(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.23.(8分)2019年3月25日是全国中小学生安全教育日,某中学为加强学生的安全意识,组织了全校800名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24.(8分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.(1)已知点,,________;(2)表示点和点之间的距离;(3)请借助图形,求的最小值.25.(10分)计算:(2+3)(2﹣3)+(12﹣6)÷3.26.(10分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先去掉分母,再将增根x=1代入即可求出m的值.【详解】解,去分母得x-3=m把增根x=1代入得m=1-3=-2故选B.【点睛】此题主要考查分式方程的求解,解题的关键是熟知增根的含义.2、C【解析】当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=×10=5,当8是斜边时,斜边上的中线是4,故选C.3、A【解析】

根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.【详解】解:∵k=-3<0,则y随x的增大而增大.又∵0>a>a-1,则b>c.故选A.【点睛】本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:(1)反比例函数y=kx(k≠(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4、A【解析】

根据平行四边形的性质可得出,,因此,,即可得出答案.【详解】解:根据题意可画出示意图如下:∵四边形ABCD是平行四边形,∴,∴,∵,∴,∴.故选:A.【点睛】本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.5、B【解析】

利用最简二次根式定义求解即可.【详解】解:,故选:B.【点睛】此题考查最简二次根式定义,熟练掌握运算法则是解本题的关键.6、A【解析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母(x-1))=0,得到x=1,然后代入化为整式方程的方程算出m的值【详解】方程两边都乘(x﹣1),得x=3(x﹣1)﹣m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=﹣1,故m的值是﹣1.故选:A.【点睛】此题考查分式方程的增根,解题关键在于利用原方程有增根7、C【解析】

由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°【详解】∵与关于点成中心对称∴AC=CF,BC=EC∴四边形AEFB是平行四边形当AF=BE时,即BC=AC,四边形AEFB是矩形又∵∴△BCA为等边三角形,故选C【点睛】本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA是等边三角形8、C【解析】试题分析:选项A,三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,选项A正确;选项B,三条边满足关系a2=b2-c2,根据勾股定理的逆定理可得选项B正确;选项C,三条边的比为1:2:3,12+22≠32,选项C错误;选项D,三个角满足关系∠B+∠C=∠A,则∠A为90°,选项D正确.故答案选C.考点:三角形的内角和定理;勾股定理的逆定理.9、A【解析】

利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:根据题意可得方程组的解是.故选:A.【点睛】本题考查了一次函数与二元一次方程组:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.10、A【解析】

观察函数图象结合点P的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当时,.故选:A.【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式的解集是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意,得:,解得:.故y与x之间的关系式为:y=x+14.1;当x=4时,y=0.1×4+14.1=16.1.故答案为:16.1【点睛】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程12、5或2【解析】试题分析:根据平均数与中位数的定义就可以解决.中位数可能是7或1.解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=2;当x≤5时:(7+7+5+x)=1,解得:x=5;当5<x<7时:(7+7+x+5)÷4=(x+7)÷2,解得x=5,舍去.所以x的值为5或2.故填5或2.考点:中位数;算术平均数.13、2或6或3.1或4.1.【解析】

先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.【详解】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷=2÷=4,①∠BDE=90°时,如图(1)∵D为BC的中点,∴DE是ΔABC的中位线,∴AE=AB=×4=2,点E在AB上时,t=2÷1=2秒,点E在BA上时,点E运动的路程为4×2-2=6,t=6÷1=6;②∠BED=90°时,如图(2)BE=BD=×2×=点E在AB上时,t=(4-0.1)÷1=3.1,点E在BA上时,点E运动的路程为4+0.1=4.1,t=4.1÷1=4.1,综上所述,t的值为2或6或3.1或4.1.故答案为:2或6或3.1或4.1.【点睛】掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.14、4或1【解析】

分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.【详解】解:分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,∴CD′=D'F2-C∴BD'=BC−CD'=12,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,∴182+x2=(18−x)2+122,解得:x=4,即AE=4;②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,CD'=D'F2-C∴BD'=BC+CD'=24,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,∴182+x2=(18−x)2+242,解得:x=1,即AE=1;综上所述,线段AE的长为4或1;故答案为:4或1.【点睛】本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.15、-6【解析】

根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】32故答案为-616、2【解析】

根据题意,可设;把,代入即可求得k的值,从而求得函数解析式;代入,即可求得x的值.【详解】设,把,代入,得:解得:则函数的解析式为:即把代入,解得:故答案为:2【点睛】本题考查了正比例函数以及待定系数法求函数解析式,稍有难度,熟练掌握正比例函数的概念和待定系数法是解答本题的关键.17、135【解析】试题分析:如图,连接EE′,∵将△ABE绕点B顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.∴EE′=3,∠BE′E=45°.∵E′E3+E′C3=8+1=3,EC3=3.∴E′E3+E′C3=EC3.∴△EE′C是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.18、1【解析】

根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴AC=,,∠BAC=45°,

∵12+(2)2=32,

∴∠DAC=90°,

∴∠BAD=90°+45°=1°,

故答案是:1.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题(共66分)19、(1)20;(2)见解析;(3)4,4;(4)4(天).【解析】

(1)由百分比之和为1可得;

(2)先根据2天的人数及其所占百分比可得总人数,再用总人数乘以对应百分比分别求得3、5、7天的人数即可补全图形;

(3)根据众数和中位数的定义求解可得;

(4)根据加权平均数和样本估计总体思想求解可得.【详解】解:(1)a=100﹣(15+20+30+10+5)=20,故答案为20;(2)∵被调查的总人数为30÷15%=200人,∴3天的人数为200×20%=40人,5天的人数为200×20%=40人,7天的人数为200×5%=10人,补全图形如下:(3)众数是4天、中位数为=4天,故答案为4、4;(4)估计该市初二学生每学期参加综合实践活动的平均天数约是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1)甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①;②W最小值为440天【解析】

(1)甲公司每天修千米,乙公司每天修千米,根据题意列分式方程解答即可;(2)①由题意得,再根据题意列不等式组即可求出的取值范围;②写出与、之间的关系式,再根据一次函数的性质解答即可.【详解】解:(1)设甲公司每天修千米,乙公司每天修千米,根据题意得,,解得,经检验,为原方程的根,,,答:甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①由题意得,,,又,;②由题意得,,即,,随的增大而增大,又,时,最小值为440天.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,分式方程的应用,解题的关键是从实际问题中整理出数量关系并利用该数量关系求解.21、(1)560人;(2)54°;(3)补图见解析.【解析】分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360°即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;详解:(1)根据题意得:224÷40%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:×360°=54°,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22、(1)见解析;(2)乙组成绩好于甲组,理由见解析【解析】

(1)根据测试成绩表求出乙组成绩为1分和9分的人数,补全统计图,再根据平均数的计算方法和中位数的定义求出平均数和中位数,即可补全分析表;(2)根据平均分、方差、中位数、合格率的意义即可写出支持小聪的观点的理由.【详解】(1)根据测试成绩表即可补全统计图(如图):补全分析表:甲组平均分(4×1+5×2+6×5+1×2+8×1+9×4)÷15=6.8,乙组中位数是第8个数,是1.统计量平均分方差中位数合格率优秀率甲组6.82.56680.0%26.1%乙组6.81.16186.1%13.3%(2)甲乙两组平均数一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定,又乙组合格率比甲组高,所以乙组成绩好于甲组.【点睛】此题考查频数(率)分布直方图,方差,中位数,加权平均数,解题关键在于掌握中位数和方差的运算公式.23、(1)200m=70n=0.12;(2)见解析;(3)224.【解析】

(1)用第一个分数段的频数除以它的频率可得到调查的总人数,然后用总人数乘以0.35得到m的值,用24除以总人数可得到n的值;

(2)利用80-90的频数为70可补全频数分布直方图;

(3)估计样本估计总体,用800乘以前面两分数段的频率之和可估计出该校安全意识不强的学生数.【详解】解:(1)16÷0.08=200,

m=200×0.35=70,n=24÷200=0.12;

故答案为200,70;0.12;

(2)如图,

(3)800×(0.08+0.2)=224,

所以该校安全意识不强的学生约有224人.【点睛】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.24、(1);(2),,;(3)最小值是.【解析】

(1)根据两点之间的距离公式即可得到答案;(2)根据表示点与点之间的距离,可以得到A、B两点的坐标;(3)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论