




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省汾阳市2024年八年级数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一次函数ymx的图像过点(0,2),且y随x的增大而增大,则m的值为()A.1 B.3 C.1 D.1或32.在中,点、分别为边、的中点,则与的面积之比为A. B. C. D.3.点A(-2,5)在反比例函数的图像上,则该函数图像位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限4.的平方根是()A. B. C. D.5.如图,在矩形ABCD中,已知,,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则EF的长为A.2 B.3 C.4 D.56.如图:菱形ABCD的对角线AC,BD相交于点O,AC=,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是()A. B.或 C. D.不存在7.下面计算正确的是()A. B. C. D.8.若顺次连结四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形 B.一定是菱形 C.对角线一定互相垂直 D.对角线一定相等9.某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是()A.452名学生 B.抽取的50名学生C.452名学生的课外阅读情况 D.抽取的50名学生的课外阅读情况10.如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>3 B.x<3 C.x>5 D.x<511.如图,在平面直角坐标系中,Rt△ABC的顶点B、C的坐标分别为(3,4)、(4,2),且AB平行于x轴,将Rt△ABC向左平移,得到Rt△A′B′C′.若点B′、C′同时落在函数y=(x>0)的图象上,则k的值为()A.2 B.4 C.6 D.812.一个多边形的边数增加2条,则它的内角和增加()A.180° B.90° C.360° D.540°二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.14.将直线向上平移2个单位得到直线_____________.15.如图,在菱形ABCD中,AC=8,菱形ABCD的面积为24,则菱形ABCD周长为________16.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+=.17.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.18.方程的解是_______.三、解答题(共78分)19.(8分)已知:如图,在△ABC中,D是AC上一点,,△BCD的周长是24cm.(1)求△ABC的周长;(2)求△BCD与△ABD的面积比.20.(8分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)21.(8分)已知x=+1,y=﹣1,求x2+y2的值.22.(10分)直线过点,直线过点,求不等式的解集.23.(10分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.24.(10分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.求证:四边形ACEF是平行四边形.25.(12分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求△ABC的周长.26.某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生参加这次测验?(2)求1.5~2.5这一分数段的频数是多少,频率是多少?(3)若80分以上为优秀,则该班的优秀率是多少?
参考答案一、选择题(每题4分,共48分)1、B【解析】
先根据函数的增减性判断出m的符号,再把点(1,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>1.∵一次函数y=mx+|m-1|的图象过点(1,2),∴当x=1时,|m-1|=2,解得m1=3,m2=-1<1(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、C【解析】
由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【详解】如图所示,∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴.故选C.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.3、D【解析】
根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.【详解】∵反比例函数的图像经过点(-2,5),∴k=(-2)×5=-10,∵-10<0,∴该函数位于第二、四象限,故选:D.【点睛】本题考查反比例函数上的点坐标的特点,反比例函数上的点横、纵坐标之积等于k;本题也考查了反比例函数的性质,对于反比例函数,当k大于0时,图像位于第一、三象限,当k小于0,图像位于第二、四象限.4、B【解析】
根据开平方的意义,可得一个数的平方根.【详解】解:9的平方根是±3,
故选:B.【点睛】本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.5、B【解析】
求出AC的长度;证明设为,得到;列出关于的方程,求出即可解决问题.【详解】解:四边形ABCD为矩形,,;由勾股定理得:,;由题意得:,;设为,,;由勾股定理得:,解得:,.故选:B.【点睛】该题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答6、A【解析】
根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.【详解】①当点P在BO上,0<x≤1时,如图1所示.∵四边形ABCD是菱形,AC=2,BD=2,∴AC⊥BD,BO=BD=1,AO=AC=1,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=2S△BFP=2××x•=x1.∴S1=8-x1.②当点P在OD上,1<x≤2时,如图1所示.∵AB=2,BF=,∴AF=AB-BF=2.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=2-.∴tan∠FAM=.∴FM=(2-).∴S△AFM=AF•FM=(2-)•(2-)=(2-)1.∵四边形PFBG关于BD对称,四边形QEDH与四边形FPBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S1=2S△AFM=2×(2-)1=(x-8)1.∴S1=8-S1=8-(x-8)1.综上所述:当0<x≤1时,S1=x1,S1=8-x1;当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.当点P在BO上时,0<x≤1.∵S1=S1,S1+S1=8,∴S1=2.∴S1=x1=2.解得:x1=1,x1=-1.∵1>1,-1<0,∴当点P在BO上时,S1=S1的情况不存在.当点P在OD上时,1<x≤2.∵S1=S1,S1+S1=8,∴S1=2.∴S1=(x-8)1=2.解得:x1=8+1,x1=8-1.∵8+1>2,1<8-1<2,∴x=8-1.综上所述:若S1=S1,则x的值为8-1.故选A.【点睛】本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.7、B【解析】
根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A.3+不是同类项无法进行运算,故A选项错误;B.=3,故B选项正确;C.,故C选项错误;D.,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8、D【解析】
试题分析:菱形的四条边都相等,根据三角形中位线的性质可得原四边形的对角线一定相等.考点:菱形的性质【详解】因为菱形的各边相等,根据四边形的中位线的性质可得原四边形的对角线一定相等,故选D.9、D【解析】
根据样本是总体中所抽取的一部分个体,可得答案.【详解】解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.故选:D.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10、D【解析】
由图象可知:A(1,0),且当x<1时,y>0,即可得到不等式kx+b>0的解集是x<1,即可得出选项.【详解】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:A(1,0),根据图象当x<1时,y>0,即:不等式kx+b>0的解集是x<1.故选:D.【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象11、B【解析】
设平移的距离为m,由点B、C的坐标可以表示出B′、C′的坐标,B′、C′都在反比例函数的图象上,可得方程,求出m的值,进而确定点B′、C′的坐标,代入可求出k的值.【详解】设Rt△ABC向左平移m个单位得到Rt△A′B′C′.由B(3,4)、C(4,2),得:B′(3-m,4),C′(4-m,2)点B′(3-m,4),C′(4-m,2)都在反比例函数的图象上,∴(3-m)×4=(4-m)×2,解得:m=2,∴B′(1,4),C′(2,2)代入反比例函数的关系式得:k=4,故选:B.【点睛】本题考查了反比例函数的图象上点的坐标特征以及平移的性质,表示出平移后对应点的坐标,建立方程是解决问题的关键.12、C【解析】
根据n边形的内角和定理即可求解.【详解】解:原来的多边形的边数是n,则新的多边形的边数是n+1.(n+1﹣1)•180﹣(n﹣1)•180=360°.故选:C.【点睛】本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.二、填空题(每题4分,共24分)13、1【解析】
∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.14、【解析】
利用平移时k的值不变,只有b值发生变化,由上加下减得出即可.【详解】解:直线y=x-1向上平移2个单位,得到直线的解析式为y=x-1+2=x+1.故答案为:【点睛】本题考查了一次函数图象与几何变换,熟记直线解析式平移的规律:“上加下减,左加右减”是解题的关键.15、20【解析】
根据菱形面积公式可求BD的长,根据勾股定理可求菱形边长,即可求周长.【详解】解:∵S菱形ABCD=12AC×BD∴24=12×8×BD∴BD=6,∵ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AB=A∴菱形ABCD的周长为4×5=20.【点睛】本题考查了菱形的性质,利用菱形的面积公式求BD的长是本题的关键.16、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.17、6【解析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.【详解】解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,∴以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6阴影部分的面积为2π+-(-6),即为6.【点睛】此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.18、【解析】
观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:两边同时乘以得,,解得,,检验:当时,,不是原分式方程的解;当时,,是原分式方程的解.故答案为:.【点睛】本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.三、解答题(共78分)19、(1)36cm;(2)【解析】试题分析:(1)根据相似三角形的周长的比等于相似比进行计算即可;
(2)根据相似三角形的面积的比等于相似比的平方进行计算即可.试题解析:(1)∵,∴∽∴∵的周长是cm∴的周长是(2)∵∽∴∴20、见解析.【解析】分析:首先根据题意写出已知和求证,再根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.详解:已知:如图,在□ABCD中,AC=BD.求证:□ABCD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC,在△ADC和△BCD中,∵,∴△ADC≌△BCD,∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°,∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.点睛:本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.21、1【解析】
先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.【详解】先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.解:∵x=+1,y=﹣1,∴x+y=+1+﹣1=2、xy=(+1)(﹣1)=2﹣1=1,则原式=(x+y)2﹣2xy=(2)2﹣2×1=8﹣2=1.【点睛】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式运算法则及平方差公式.22、【解析】
将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可【详解】解:将代入得:,解得:k=1;将代入得:,解得:;∴,则可得解得故答案为:【点睛】本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握23、(1)反比例函数解析式为:y=;(2)P(5,0);(3)Q点坐标为:(,0).【解析】试题分析:(1)利用已知点B坐标代入一次函数解析式得出答案,再利用△OBM的面积得出M点纵坐标,再利用相似三角形的判定与性质得出M点坐标即可得出反比例函数解析式;(2)过点M作PM⊥AM,垂足为M,得出△AOB∽△PMB,进而得出BP的长即可得出答案;(3)利用△QBM∽△OAM,得出=,进而得出OQ的长,即可得出答案.解:(1)如图1,过点M作MN⊥x轴于点N,∵一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,∴0=k1﹣1,AO=BO=1,解得:k1=1,故一次函数解析式为:y=x﹣1,∵△OBM的面积为1,BO=1,∴M点纵坐标为:2,∵∠OAB=∠MNB,∠OBA=∠NBM,∴△AOB∽△MNB,∴==,则BN=2,故M(3,2),则xy=k2=6,故反比例函数解析式为:y=;(2)如图2,过点M作PM⊥AM,垂足为M,∵∠AOB=∠PMB,∠OBA=∠MBP,∴△AOB∽△PMB,∴=,由(1)得:AB==,BM==2,故=,解得:BP=4,故P(5,0);(3)如图3,∵△QBM∽△OAM,∴=,由(2)可得AM=3,故=,解得:QB=,则OQ=,故Q点坐标为:(,0).考点:反比例函数综合题.24、证明见解析【解析】分析:根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明.详解:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册计量师计量专业案例分析模拟试卷(测量误差与不确定度)-案例解析与预测
- 考研复习-风景园林基础考研试题【综合题】附答案详解
- 风景园林基础考研资料试题及答案详解【典优】
- 《风景园林招投标与概预算》试题A附参考答案详解【培优b卷】
- 2025-2026年高校教师资格证之《高等教育法规》通关题库带答案详解(综合题)
- 2025年济南四建集团有限责任公司招聘笔试备考题库及一套参考答案详解
- 2024年深孔钻项目资金筹措计划书
- (附答案)2025医学基础知识考试题库
- 生物(武汉卷)2025年中考考前押题最后一卷
- 谢师宴的意义现状与问题理性对待正确举办谢师宴课件
- YS/T 22-2010锑酸钠
- GB/T 30828-2014预应力混凝土用中强度钢丝
- 井下作业修井防喷演习手动双闸板防喷器课件
- 《月光下的中国》朗诵稿
- MSA量测系统分析RMSA量测系统分析课件
- 麻醉与肝脏课件
- 高质量心肺复苏
- 锅炉防磨防爆总结汇报课件
- 井巷工程课程设计-2篇
- 《高等数学》全册教案教学设计
- 工程样板验收表格
评论
0/150
提交评论