2024年安徽省安庆市九一六校八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
2024年安徽省安庆市九一六校八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
2024年安徽省安庆市九一六校八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
2024年安徽省安庆市九一六校八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
2024年安徽省安庆市九一六校八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年安徽省安庆市九一六校八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.2.如图,的对角线与相交于点,,,,则的长为()A. B. C. D.3.判断由线段a,b,c能组成直角三角形的是()A.a=32,b=42,c=52B.a=,b=,c=C.a=,b=,c=D.a=3-1,b=4-1,c=5-14.下列关于矩形对角线的说法中,正确的是A.对角线相互垂直 B.面积等于对角线乘积的一半C.对角线平分一组对角 D.对角线相等5.如图,□ABCD的周长是28㎝,△ABC的周长是22㎝,则AC的长为()A.6㎝ B.12㎝ C.4㎝ D.8㎝6.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3 C.是有理数 D.37.正方形的一条对角线之长为4,则此正方形的面积是()A.16 B.4 C.8 D.88.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的()A.0 B.2.5 C.3 D.59.要使分式有意义,则x的取值应满足()A.x≠4 B.x≠﹣1 C.x=4 D.x=﹣110.估计11的值在

)A.1和2之间B.2和3之间C.3和4之间D.4和5之间11.如图,在中,已知,,平分交边于点,则边的长等于()A.4cm B.6cm C.8cm D.12cm12.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(每题4分,共24分)13.分解因时:=__________14.已知一次函数的图象经过点,则不等式的解是__________.15.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是.16.在中,若是的正比例函数,则常数_____.17.若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.18.试写出经过点,的一个一次函数表达式:________.三、解答题(共78分)19.(8分)如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;求证:(1)△BCQ≌△CDP;(2)OP=OQ.20.(8分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.21.(8分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.22.(10分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.23.(10分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.24.(10分)如图,将四边形的四边中点依次连接起来,得四边形到是平行四边形吗?请说明理由.25.(12分)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.26.已知在等腰三角形中,是的中点,是内任意一点,连接,过点作,交的延长线于点,延长到点,使得,连接.(1)如图1,求证:四边形是平行四边形;(2)如图2,若,求证:且;

参考答案一、选择题(每题4分,共48分)1、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.2、A【解析】

由平行四边形ABCD得OA=OC,OB=OD,在Rt△ABO中,由勾股定理得AB的长,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵,,,∴OA=3,OB=4,∵,在Rt△ABO中,由勾股定理得AB==,∴CD=AB=.故选A.【点睛】本题考查平行四边形的性质,勾股定理.正确的理解平行四边形的性质勾股定理是解决问题的关键.3、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.,故不是直角三角形,故本选项错误;

B.故是直角三角形,故本选项正确;C.,故不是直角三角形,故本选项错误;

D.a=3-1=2,b=4-1=3,c=5-1=4,由于,故不是直角三角形,故本选项错误.故选:B【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、D【解析】

根据矩形的性质:矩形的对角线相等且互相平分得到正确选项.【详解】解:矩形的对角线相等,故选:.【点睛】此题考查了矩形的性质,熟练掌握矩形的性质是解本题的关键.5、D【解析】∵□的周长是28cm,∴(cm).∵△的周长是22cm,∴(cm).6、D【解析】

根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.【详解】A.1没有倒数,所以A选项错误;B.3﹣1,所以B选项错误;C.π是无理数,所以C选项错误;D.3,所以D选项正确.故选D.【点睛】本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.7、C【解析】

根据正方形的面积等于对角线乘积的一半列式计算即可得解.【详解】∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8,故选C.【点睛】本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.8、C【解析】

解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.9、A【解析】

根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】由题意知x-4≠0,

解得:x≠4,

故选:A.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.10、C【解析】

因为3的平方是9,4的平方是16,即9=3,16=4,所以估计11的值在3和4之间,故正确的选项是C.11、A【解析】

首先根据平行四边形的性质,得出,,,进而得出∠DAE=∠AEB,然后得出∠BAE=∠AEB,根据等腰三角形的性质,即可得解.【详解】∵平行四边形ABCD∴,,∴∠DAE=∠AEB又∵平分∴∠BAE=∠DAE∴∠BAE=∠AEB∴AB=BE又∵,,∴CD=4cm故答案为A.【点睛】此题主要考查平行四边形和等腰三角形的性质,熟练掌握,即可解题.12、D【解析】因为函数与的图象相交于点A(m,2),把点A代入可求出,所以点A(-1,2),然后把点A代入解得,不等式,可化为,解不等式可得:,故选D.二、填空题(每题4分,共24分)13、.【解析】

首先提取公因式,进而利用完全平方公式分解因式即可.【详解】.故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.14、【解析】

将点P坐标代入一次函数解析式得出,如何代入不等式计算即可.【详解】∵一次函数的图象经过点,∴,即:,∴可化为:,即:,∴.故答案为:.【点睛】本题主要考查了一次函数与不等式的综合运用,熟练掌握相关概念是解题关键.15、1.【解析】解不等式组得,3≤x<1,∵x是整数,∴x=3或2.当x=3时,3,2,6,8,x的中位数是2(不合题意舍去);当x=2时,3,2,6,8,x的中位数是2,符合题意.∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.16、2【解析】试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.考点:正比例函数的定义.17、【解析】

由方程有两个不相等的实数根,可得△>0,建立关于a的不等式,解不等式求出a的取值范围即可.【详解】∵关于的一元二次方程有两个不相等的实数根,∴△=16+4a>0,解得,.故答案为:a>-4.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18、y=x+1【解析】

根据一次函数解析式,可设y=kx+1,把点代入可求出k的值;【详解】因为函数的图象过点(1,2),所以可设这个一次函数的解析式y=kx+1,把(1,2)代入得:2=k+1,解得k=1,故解析式为y=x+1【点睛】此题考查一次函数解析式,解题的关键是设出解析式;三、解答题(共78分)19、(1)见解析;(2)见解析.【解析】

(1)根据正方形的性质和DP⊥CQ于点E可以得到证明△BCQ≌△CDP的全等条件;(2)根据(1)得到BQ=PC,然后连接OB,根据正方形的性质可以得到证明△BOQ≌△COP的全等条件,然后利用全等三角形的性质就可以解决题目的问题.【详解】证明:(1)∵四边形ABCD是正方形,∴∠B=∠PCD=90°,BC=CD,∴∠2+∠3=90°,又∵DP⊥CQ,∴∠2+∠1=90°,∴∠1=∠3,在△BCQ和△CDP中,∴△BCQ≌△CDP;(2)连接OB,由(1)△BCQ≌△CDP可知:BQ=PC,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵点O是AC中点,∴BO=AC=CO,∠4=∠ABC=45°=∠PCO,在△BOQ和△COP中,∴△BOQ≌△COP,∴OQ=OP.【点睛】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用它们构造证明全等三角形的条件,然后通过全等三角形的性质解决问题.20、【解析】

首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度【详解】过点A作AD⊥BC,则△ADC和△ABD为直角三角形∵∠C=30°AC=4cm∴AD=2cmCD=cm根据Rt△ABD的勾股定理可得:BD=cm∴BC=BD+CD=()cm【点睛】本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.21、(1)见解析;(2)见解析.【解析】

(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.22、(1)证明见解析;(2)1.【解析】

(I)根据平行四边形的性质得出AD∥BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=1,AE=EC,求出AE=BE即可.【详解】(I)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,∴∠2+∠3=90°∠1+∠B=90°,∴∠3=∠B,∴AE=BE,∵AE=1,∴BE=1.【点睛】本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.23、3,2.【解析】

根据比例求出EC,设CH=x,表示出DH,根据折叠可得EH=DH,在Rt△ECH中,利用勾股定理列方程求解即可得到CH.【详解】解:∵BC=9,BE:EC=1:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC1+CH1=EH1.即31+x1=(9﹣x)1,解得x=2,∴CH=2.【点睛】本题考查了翻折变换,正方形的性质,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键.24、四边形到是平行四边形.理由见解析.【解析】分析:连接一条对角线把转化成三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论