版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省重点中学2024届数学八年级下册期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,直线过点和点,则方程的解是()A. B. C. D.2.如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90° B.75° C.65° D.85°3.对于反比例函数,当时,y的取值范围是()A. B.C. D.4.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C. D.25.在下列各式中,(1),(2)x2y-3xy2,(3),(4),是分式的有()A.(1).(2) B.(1).(3) C.(1).(4) D.(3).(4)6.甲、乙两同学同时从学校出发,步行10千米到某博物馆,已知甲每小时比乙多走1千米,结果乙比甲晚20分钟,设乙每小时走x千米,则所列方程正确的是()A. B. C. D.7.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-108.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C. D.9.如图,四边形ABCD为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为()A.β=180-α B.β=180°- C.β=90°-α D.β=90°-10.如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画()A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.如图,在矩形中,点在对角线上,过点作,分别交,于点,,连结,.若,,图中阴影部分的面积为,则矩形的周长为_______.12.当x=______时,分式的值是1.13.直线y=2x+6经过点(0,a),则a=_____.14.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.甲78988乙610978比较甲、乙这5次射击成绩的方差S甲1,S乙1,结果为:S甲1_____S乙1.(选填“>”“=”或“<“)15.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.16.正方形中,点是对角线上一动点,过作的垂线交射线于,连接,,则的值为________.17.关于的一元二次方程有两个不相等的实数根,则的取值范围是_______.18.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.三、解答题(共66分)19.(10分)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?20.(6分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB`C,连结B`D.结论1:△AB`C与▱ABCD重叠部分的图形是等腰三角形;结论2:B`D∥AC;(1)请证明结论1和结论2;(应用与探究)(2)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB`C,连接B`D若以A、C、D、B`为顶点的四边形是正方形,求AC的长(要求画出图形)21.(6分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.22.(8分)解方程:(1)2x2﹣3x+1=1.(2)x2﹣8x+1=1.(用配方法)23.(8分)“垃圾分一分,环境美十分”.甲、乙两城市产生的不可回收垃圾需运送到、两垃圾场进行处理,其中甲城市每天产生不可回收垃圾吨,乙城市每天产生不可回收垃圾吨。、两垃圾场每天各能处理吨不可回收垃圾。从垃圾处理场到甲城市千米,到乙城市千米;从垃圾处理场到甲城市千米,到乙城市千米。(1)请设计一个运输方案使垃圾的运输量(吨.千米)尽可能小;(2)因部分道路维修,造成运输量不低于吨,请求出此时最合理的运输方案.24.(8分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.25.(10分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题进球数/个1098765甲111403乙012502(1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;(2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?26.(10分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数y=-6x的图象经过原点,函数y=-6x+5的图象经与y轴交于点(0,5),即它可以看作直线y=-6x向上平移5个单位长度而得到。比较一次函数解析式y=kx+bk≠0与正比例函数解析式y=kxk≠0,容易得出:一次函数y=kx+bk≠0的图象可由直线y=kx通过向上(或向下)平移b个单位得到(当b>0(结论应用)一次函数y=x-3的图象可以看作正比例函数的图象向平移个单位长度得到;(类比思考)如果将直线y=-6x的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A(0,0)和B(1,-6)向右平移5个单位得到点C(5,0)和D(6,-6),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+bk≠0,将C(5,0)和D(6,-6)代入得到:5k+b=06k+b=-6解得k=-6b=30,所以直线CD的解析式为:y=-6x+30;①将直线y=-6x向左平移5个单位长度,则平移后得到的直线解析式为.②若先将直线y=-6x向左平移4个单位长度后,再向上平移5个单位长度,得到直线l,则直线l的解析式为(拓展应用)已知直线l:y=2x+3与直线关于x轴对称,求直线的解析式.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.【详解】解:∵直线y=ax+b过点B(−2,0),∴方程ax+b=0的解是x=−2,故选:B.【点睛】此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.2、D【解析】
由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【详解】∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选D.【点睛】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.3、A【解析】
根据反比例函数的k=-6<0,则其图象在第二象限上,y随x的增大而增大,则x=-1时y取得最小值,从而可以得到结果.【详解】∵k=-6<0,∴的图象在第二象限上,y随x的增大而增大,∴时,∴.故选A.【点睛】此题重点考查学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.4、D【解析】
∵3、a、4、6、7,它们的平均数是5,∴(3+a+4+6+7)=5,解得,a=5S2=[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.5、B【解析】
根据分式的定义看代数式中分母中含有字母的代数式为分式.【详解】x2y-3xy2和分母中不含有字母,为整式;和分母中含有字母为分式,故选B.【点睛】本题考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.6、D【解析】
根据题意,等量关系为乙走的时间-=甲走的时间,根据等量关系式列写方程.【详解】20min=h根据等量关系式,方程为:故选:D【点睛】本题考查列写分式方程,注意题干中的单位不统一,需要先换算单位.7、C【解析】
绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.8、D【解析】分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM=
AC=5
,tan∠BAC=,可得EM=
;在Rt△AME中,由勾股定理求得AE=
=1.2.故选:B.点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.9、D【解析】
如图,根据题意得∠DAC=∠α,∠EAO=∠α,∠AEO=∠β,∠EOA=90°,再根据三角形内角和定理可得β=90°-.【详解】如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠α由作图痕迹可得AE平分∠DAC,EO⊥AC∴∠EAO=∠α,∠EOA=90°又∠AEO=∠β,∠EAO+∠AOE+∠AEO=180°,∴∠α+∠β+90°=180°,∴β=90°-故选D.【点睛】本题考查了矩形的性质,角平分线以及线段垂直平分线的性质,熟练掌握和运用相关的知识是解题的关键.10、D【解析】
根据平行四边形的判定方法即可解决问题.【详解】在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,故选D.【点睛】本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.二、填空题(每小题3分,共24分)11、【解析】
作PM⊥AD于M,交BC于N,进而得到四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,继而可证明S△PEB=S△PFD,然后根据勾股定理及完全平方公式可求,,进而求出矩形的周长.【详解】解:作PM⊥AD于M,交BC于N,
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE,且S△DFP+S△PBE=9,∴,且,∴,即,.∵,,∴,,∴,∴矩形ABCD的周长=2=.故答案为:.【点睛】本题考查了矩形的性质,勾股定理,完全平方公式,三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.12、1【解析】
直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值是1,∴x=1.故答案为:1.【点睛】此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.13、6【解析】
直接将点(0,a)代入直线y=2x+6,即可得出a=6.【详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.【点睛】此题主要考查一次函数解析式的性质,熟练掌握即可得解.14、<【解析】
首先求出各组数据的平均数,再利用方差公式计算得出答案.【详解】,,,,则﹤.故答案为:﹤.【点睛】此题主要考查了方差,正确掌握方差计算公式是解题关键.15、21.2【解析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,DMDN=即:0.630=0.4∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.16、【解析】
如图,连接PC.首先证明PA=PC,利用相似三角形的性质即可解决问题.【详解】解:如图,连接PC.
∵四边形ABCD是正方形,
∴点A,点C关于BD对称,∠CBD=∠CDB=45°,
∴PA=PC,
∵PE⊥BD,
∴∠DPE=∠DCB=90°,
∴∠DEP=∠DBC=45°,
∴△DPE∽△DCB,
∴,
∴,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴,
∴BE:PA=,故答案为.【点睛】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、q<1【解析】
解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<1.故答案为q<1.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.18、1【解析】作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC为直角三角形,∴∠A=∠B=45°,∴△APE和△PBD为等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四边形PECD为矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四边形QPCP′为菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值为1.故答案为1.【点睛】
此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用.三、解答题(共66分)19、(1)8;7.5(2)乙运动员射击更稳定【解析】
(1)根据平均数和中位数的定义解答即可;(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.【详解】解:(1)甲的平均数==8.乙的十次射击成绩按从小到大顺序排列为7,7,7,7,7,8,9,9,9,10,中位数是7.5;故答案为8;7.5;(2)=[+++]=1.6;乙=(7+7+7+7+7+8+9+9+9+10)=8,=[++]=1.2;∴∴乙运动员的射击成绩更稳定.【点睛】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20、【发现与证明】(1)见解析;【应用与探究】(1)AC的长为或1.【解析】
结论1:先判断出,进而判断出,即可得出结论;结论1、先判断出,进而判断出,再判断出,即可得出结论;分两种情况:利用等腰直角三角形的性质即可得出结论.【详解】解:结论1:四边形ABCD是平行四边形,,,,由折叠知,≌,∴∠ACB=∠ACB’,BC=B’C∴∠EAC=∠ACB’,即是等腰三角形;结论1:由折叠知,,,∵AE=CE【应用与探究】:分两种情况:如图1所示:四边形是正方形,,,,;如图1所示:;综上所述:AC的长为或1.【点睛】此题是几何变换综合题主要考查了平行四边形的性质,折叠的性质,正方形的性质,判断出是等腰三角形是解本题的关键.21、(1)证明见解析;(2)∠B=70°.【解析】
(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.【详解】(1)证明:过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD∥CE,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴AD=CB;(2)过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD=BC,∴CE=CB,∴∠B=∠CEB,∵AD∥CE,∴∠A=∠CEB,∴∠B=∠A=70°.【点睛】本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.22、(1)x1=,x2=1;(2)x1=4+,x2=4﹣【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)2x2﹣3x+1=1,(2x﹣1)(x﹣1)=1,2x﹣1=1,x﹣1=1,x1=,x2=1;(2)x2﹣8x+1=1,x2﹣8x=﹣1,x2﹣8x+16=﹣1+16,(x﹣4)2=15,x﹣4=±,x1=4+,x2=4﹣.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.23、(1)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨,乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;(2)甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨.【解析】
(1)设出甲城市运往垃圾场的垃圾为吨,从而表示出两个城市运往两个垃圾场的垃圾的吨数,再根据路程计算出总运输量,于是就得到一个总运输量与的函数关系式,根据函数的增减性和自变量的取值范围,确定何时总运输量最小,得出运输方案;(2)利用运输量不低于2600吨,得出自变量的取值范围,再依据函数的增减性做出判断,制定方案.【详解】解:(1)甲城市运送不可回收垃圾到垃圾场吨,总运输量为吨.千米,随增大而增大当取最小,最小由题意可知,解得:当时,运输量最小;甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨(2)由①可知:,又,解得:,此时当时,运输量最小;运输方案最合理甲城市运送不可回收垃圾到垃圾场吨,到垃圾场吨;乙城市运送不可回收垃圾到垃圾场吨,到垃圾场吨【点睛】本题考查一次函数的应用,一元一次不等式组应用等知识,准确的理解数据之间的关系,设合适的未知数,得到总运输量与自变量的函数关系式是解决问题的关键.24、(1)45°;(2)证明见解析;(3).【解析】
(1)∵正方形ABCD,AG⊥EF,∴AG=AB,∠ABE=∠AGE=∠BAD=90°,AE=AE,∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∴∠EAF=∠BAD=45°;(2)证明:由旋转知,∠BAH=∠DAN,AH=AN,∵∠BAD=90°,∠EAF=45°,∴∠BAM+∠DAN=45°,∴∠HAM=∠BAM+∠BAH=∠BAM+∠DAN=45°,∴∠HAM=∠NAM,AM=AM,∴△AHM≌△ANM,∴MN=MH,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°由旋转知,∠ABH=∠ADB=45°,HB=ND,∴∠HBM=∠ABH+∠ABD=90°,∴,∴;(3).以下解法供参考∵,∴;在(2)中,设,则.∴.即.25、(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)要争取夺取总进球团体第一名,应选乙班;要进入学校个人前3名,应选甲班.【解析】
(1)利用平均数、中位数和众数的定义直接求出;(2)根据方差和个人发挥的最好成绩进行选择.【详解】解:(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)甲班S12=[(10﹣7)2+(9﹣7)2+(8﹣7)2+1×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,乙班S22=[0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.1.∵甲方差>乙方差,∴要争取夺取总进球团体第一名,应选乙班.∵甲班有一位百发百中的出色选手,∴要进入学校个人前3名,应选甲班.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.26、【结论应用】y=x,下,1;【类比思考】①y=-6x-10;②y=-6x-3;【拓展应用】y=-2x-1.【解析】【结论应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仪器检定合同
- 2024年度商场电梯维修与安装分包合同2篇
- 二零二四年度建设施工合同内容
- 2024年度租赁合同:某商业楼租金及使用范围的明确规定2篇
- 2024年度食品加工厂建设合同
- 2024年度艺人经纪合同:演艺人员经纪服务协议
- 2024年度融资合同:企业债券发行与投资协议2篇
- 2024年度建筑工程设计合作合同
- 2024年度专属定制打胶合同范本
- 软件著作权许可协议三篇
- 《地方执法评估体系研究》
- 公共卫生与预防医学继续教育平台“大学习”活动线上培训栏目题及答案
- DZ∕T 0382-2021 固体矿产勘查地质填图规范(正式版)
- 人工智能生涯发展展示
- 家庭保险保障计划书
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 思想道德与法治课件:第四章 第一节 全体人民共同的价值追求则
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 装配式活动板房安装检验批质量验收记录表
- 年生产1万吨钒氮合金项目可行性研究报告
- 2020年脑卒中规范化诊治简明手册6.抗凝篇
评论
0/150
提交评论