福建省厦门市第一中学2024年八年级数学第二学期期末调研模拟试题含解析_第1页
福建省厦门市第一中学2024年八年级数学第二学期期末调研模拟试题含解析_第2页
福建省厦门市第一中学2024年八年级数学第二学期期末调研模拟试题含解析_第3页
福建省厦门市第一中学2024年八年级数学第二学期期末调研模拟试题含解析_第4页
福建省厦门市第一中学2024年八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门市第一中学2024年八年级数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下表记录了甲、乙、丙、丁四名同学参加某区“中华魂”主题教育演讲比赛的相关数据:根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择甲乙丙丁平均数分90809080方差A.甲 B.乙 C.丙 D.丁2.点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.3.已知关于的方程是一元二次方程,则的取值范围是()A. B. C. D.任意实数4.若直线与直线的交点在第三象限,则的取值范围是()A. B. C.或 D.5.如图,在中,平分,且,则的周长为()A. B. C. D.6.如图,在周长为18cm的▱ABCD中,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.6cm B.7cmC.8cm D.9cm7.若关于的一元二次方程有实数根,则应满足()A. B. C. D.8.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.279.某班五个课外小组的人数分布如图所示,若绘制成扇形统计图,则第二小组在扇形统计图中对应的圆心角度数是()A.45° B.60° C.72° D.120°10.给出下列化简①()2=2:②2;③12;④,其中正确的是()A.①②③④ B.①②③ C.①② D.③④二、填空题(每小题3分,共24分)11.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________.12.将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.13.如图,一次函数y=-2x+2的图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,且∠BAC=90°,则点C坐标为_____14.已知点M(-1,),N(,-2)关于x轴对称,则=_____15.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA﹣AB﹣BC的路径再回到C点,需要____分的时间.16.已知函数是关于的一次函数,则的值为_____.17.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.18.如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=1.求证:四边形ABCD是矩形.20.(6分)已知一次函数的图象经过点A(0,﹣2),B(3,4),C(5,m).求:(1)这个一次函数的解析式;(2)m的值.21.(6分)如图,在四边形中,,,,,,点从点出发,以的速度沿运动,点从点出发的同时,点从点出发,以的速度向点运动,当点到达点时,点也停止运动,设点、运动的时间为秒,从运动开始,当取何值时,?22.(8分)如图,已知各顶点的坐标分别为,,.(1)画出以点B为旋转中心,按顺时针方向旋转后得到的;(2)将先向右平移5个单位长度,再向上平移3个单位长度,得到.①在图中画出,并写出点A的对应点的坐标;②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.23.(8分)如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.(1)用向量表示下列向量:;(2)求作:(保留作图痕迹,写出结果,不要求写作法)24.(8分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:(1)在下图中画一个以线段AB为一边的直角,且的面积为2;(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________25.(10分)如图①,已知△ABC中,∠BAC=90°,AB="AC,"AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE.(2)若直线AE绕A点旋转到图②位置时(BD<CE),其余条件不变,问BD与DE、CE的数量关系如何?请给予证明;(3)若直线AE绕A点旋转到图③位置时(BD>CE),其余条件不变,问BD与DE、CE的数量关系如何?请直接写出结果,不需证明.(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.26.(10分)用配方法解方程:x2-6x+5=0

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据表格中的数据可知,甲、丙的平均成绩较好,再根据方差越小越稳定即可解答本题.【详解】由平均数可知,甲和丙成绩较好,

甲的方差小于丙的方差,故甲发挥稳定.故选A【点睛】本题考查方差、算术平均数,解答本题的关键是明确平均数和方差的意义.2、C【解析】

由第二象限纵坐标大于零得出关于m的不等式,解之可得.【详解】解:由题意知m+1>0,解得m>﹣1,故选:C.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3、A【解析】

利用一元二次方程的定义求解即可.【详解】解:∵关于x的方程是一元二次方程,∴m+1≠0,即m≠−1,故选:A.【点睛】此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4、A【解析】

先把y=﹣2x﹣1和y=2x+b组成方程组求解,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围.【详解】解:解方程组,解得∵交点在第三象限,∴解得:b>﹣1,b<1,∴﹣1<b<1.故选A.【点睛】本题主要考查两直线相交的问题,关键在于解方程组用含b的式子表示x、y.两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.5、D【解析】

根据角平分线的定义可得∠BAE=∠DAE,再根据平行四边形的对边平行,可得AD∥BC,然后利用两直线平行,内错角相等可得∠AEB=∠DAE,根据等角对等边可得AB=BE,然后根据平行四边形的周长公式列式计算即可得解.【详解】解:∵AE平分∠BAD,

∴∠BAE=∠DAE,

∵在▱ABCD中,AD∥BC,

∴∠AEB=∠DAE,

∴AB=BE=2,

∵BE=CE=2,

∴BC=4,

∴▱ABCD的周长=2(AB+BC)=2×(2+4)=1.

故选:D.【点睛】本题考查平行四边形的性质,平行线的性质,熟记各性质并判断出AB=BE是解题的关键.6、D【解析】

利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.【详解】∵▱ABCD的对角线AC,BD相交于点O,∴O为BD的中点,∵OE⊥BD,∴BE=DE,∴△ABE的周长=AB+AE+BE=AB+AD=×18=9(cm),故答案为:D【点睛】本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长.7、B【解析】

由方程有实数根,得到根的判别式的值大于等于0,列出关于A的不等式,求出不等式的解集即可得到a的范围.【详解】解:∵关于x的一元二次方程x2−2x+a=0有实数根,∴△=4−4a≥0,解得:a≤1;故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.8、D【解析】依题意得.∴x+y=27.故选D.9、D【解析】

根据条形统计图即可得第二小组所占总体的比值,再乘以360°即可.【详解】解:第二小组在扇形统计图中对应的圆心角度数是360°×2012+20+13+5+10=120故选D.【点睛】本题考查的是条形统计图和扇形统计图的知识,难度不大,属于基础题型,明确求解的方法是解题的关键.10、C【解析】

根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式,故③错误;④原式,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.二、填空题(每小题3分,共24分)11、【解析】分析:等量关系为:原来人均单价-实际人均单价=3,把相关数值代入即可.详解:原来人均单价为,实际人均单价为,那么所列方程为,故答案为:点睛:考查列分式方程;得到人均单价的关系式是解决本题的关键.12、【解析】因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.解:∵VB∥ED,三个正方形的边长分别为2、3、5,∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,∴VB=1,∵CF∥ED,∴CF:DE=AC:AD,即CF:5=5:10∴CF=2.5,∵S梯形VBFC=(BV+CF)•BC=,∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.故答案为.13、(3,1);【解析】

先求出点A,B的坐标,再判断出△ABO≌△CAD,即可求出AD=2,CD=1,即可得出结论;【详解】如图,过点C作CD⊥x轴于D,令x=0,得y=2,令y=0,得x=1,∴A(1,0),B(0,2),∴OA=1,OB=2,∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠BAO=∠ACD,∵∠BOA=∠ADC=90°,∴△ABO≌△CAD,∴AD=BO=2,CD=AO=1,∴OD=3,∴C(3,1);【点睛】此题考查一次函数综合,解题关键在于作辅助线14、1【解析】

若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.【详解】根据题意,得b=-1,a=2,则ba=(-1)2=1,

故答案是:1.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.15、1【解析】

运用勾股定理可求出斜边AB的长,然后可求出直角三角形的周长即蜗牛所走的总路程,再除以蜗牛的行走速度即可求出所需的时间.【详解】解:由题意得,100cm,∴AB=100cm;∴CA+AB+BC=60+80+100=240cm,∴240÷20=1(分).故答案为1.【点睛】本题考查了速度、时间、路程之间的关系式及勾股定理的应用,考查了利用勾股定理解直角三角形的能力.16、-1【解析】

根据一次函数的定义,可得答案.【详解】解:由是关于x的一次函数,得,解得m=-1.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.17、110°【解析】已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.18、【解析】

令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.【详解】令时,解得,故与x轴的交点为(﹣4,0).由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.故答案为:.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题(共66分)19、详见解析.【解析】

已知AB∥CD,∠BAD=90°,由平行线的性质可得∠ADC=90°,在△ABC中,AB=5,BC=12,AC=1,根据勾股定理的逆定理得出∠B=90°,即可得四边形ABCD是矩形.【详解】证明:四边形ABCD中,AB∥CD,∠BAD=90°,∴∠ADC=90°,又∵△ABC中,AB=5,BC=12,AC=1,∵12=52+122,∴△ABC是直角三角形,且∠B=90°,∴四边形ABCD是矩形.20、(1)y=1x﹣1;(1)2.【解析】

(1)利用待定系数法把点A(0,-1),B(3,4)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(1)把C(5,m)代入y=1x-1,即可求得m的值【详解】解:∵一次函数y=kx+b的图象经过点A(0,﹣1),B(3,4),∴,解得:∴这个一次函数的表达式为y=1x﹣1.(1)把C(5,m)代入y=1x﹣1,得m=1×5﹣1=2.【点睛】此题主要考查了待定系数法求一次函数解析式和一次函数图象上点点坐标特征,熟练掌握待定系数法求一次函数步骤是解题的关键.21、当时,【解析】

首先判定当时,四边形PDCQ是平行四边形,然后利用其性质PD=QC,构建方程,即可得解.【详解】当时,四边形PDCQ是平行四边形,此时PD=QC,∴∴∴当时,.【点睛】此题主要考查利用平行四边形的性质构建方程,即可解题.22、(1)详见解析;(2)①图详见解析,A2(2,-1);②由A到A2的方向,平移的距离是个单位长度.【解析】

(1)根据旋转的性质即可作图;(2)①根据平移的性质画出图形即可;②连接AA2,根据勾股定理求出AA2的长,进而可得出结论.【详解】(1)如图所示,即为所求;(2)①如图所示,即为所求,A2(2,-1);②连接AA2,由勾股定理求得AA2=,∴如果将看成是由经过一次平移得到的,那么这一平移的平移方向是由A到A2的方向,平移的距离是个单位长度.【点睛】本题考查的是作图-旋转变换及平移变换,熟知图形平移不变性的性质是解答第(2)问的关键.23、(1),(2)见解析.【解析】

(1)AD∥BC,DE∥AB,可证得四边形ABED是平行四边形,然后利用平行四边形法则与三角形法则求解即可求得答案;(2)首先作,连接AF,则即为所求.【详解】(1)∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴∴∴∴;(2)首先作,连接AF,则即为所求.【点睛】此题考查平面向量,解题关键在于灵活运用向量的转化即可.24、(1)见解析;(2)见解析,AD=.【解析】

(1)根据正方形的性质和AB的长度作图即可;(2)利用数形结合的思想即可解决问题,由勾股定理可求出AD的长度.【详解】(1)如图,(2)如图,,AD==.【点睛】本题考查作图-应用与设计、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题.25、(1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.【解析】

(1)、根据垂直得出∠ADB=∠CEA=90°,结合∠BAC=90°得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论