2024届广东省华师附中新世界学校数学八年级下册期末监测试题含解析_第1页
2024届广东省华师附中新世界学校数学八年级下册期末监测试题含解析_第2页
2024届广东省华师附中新世界学校数学八年级下册期末监测试题含解析_第3页
2024届广东省华师附中新世界学校数学八年级下册期末监测试题含解析_第4页
2024届广东省华师附中新世界学校数学八年级下册期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省华师附中新世界学校数学八年级下册期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠AFC的度数()A.B.C.D.2.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6 D.123.分式方程x2-9x+3A.3 B.-3 C.±3 D.94.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个5.如图,在中,,,点D,E分别是AB,BC的中点,连接DE,CD,如果,那么的周长()A.28 B.28.5 C.32 D.366.直线y=kx+b不经过第三象限,则k、b应满足()A.k>0,b<0B.k<0,b>0C.k<0b<0D.k<0,b≥07.如图所示,一次函数的图像可能是()A. B. C. D.8.如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为()A.4 B.3 C.2 D.19.如图,将三个同样的正方形的一个顶点重合放置,如果°,°时,那么的度数是(

)A.15° B.25° C.30° D.45°10.已知:a=,b=,则a与b的关系是()A.相等 B.互为相反数 C.互为倒数 D.平方相等二、填空题(每小题3分,共24分)11.函数向右平移1个单位的解析式为__________.12.如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.13.如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.14.如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.15.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.16.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(-1,4),则点C的坐标是_____.17.如图,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是_________.18.如图,在矩形ABCD中,∠ACB=30°,BC=2,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.三、解答题(共66分)19.(10分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20.(6分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.21.(6分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=AB,试探索线段DF与FC的数量关系.22.(8分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元;(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.23.(8分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.24.(8分)解方程:+1=.25.(10分)学校组织八年级350名学生参加“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)求a和b的值;(2)请补全频数分布直方图。26.(10分)已知m,n是实数,定义运算“*”为:m*n=mn+n.(1)分别求4*(﹣2)与4*的值;(2)若关于x的方程x*(a*x)=﹣有两个相等的实数根,求实数a的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.【详解】解:∵AB=AC,∠BAC=120°,∴∠B=(180°-120°)÷2=30°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=30°,∴∠AFC=∠BAF+∠B=60°.故选:C.【点睛】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.也考查了等腰三角形的性质及三角形外角的性质.2、C【解析】

首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.【详解】310°×2÷180°+2=720°÷180°+2=4+2=1∴该正多边形的边数是1.故选C.【点睛】此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180(n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.3、A【解析】

方程两边同时乘以x+3,化为整式方程,解整式方程后进行检验即可得.【详解】方程两边同时乘以x+3,得x2-9=0,解得:x=±3,检验:当x=3时,x+3≠0,当x=-3时,x+3=0,所以x=3是原分式方程的解,所以方程的解为:x=3,故选A.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.4、D【解析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.5、C【解析】

根据三角形中位线定理得到AC=2DE=7,AC//DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=7,AC//DE,AC+BC=7+24=625,AB=25=625,∴AC+BC=AB,∴∠ACB=90°,∵AC//DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=32,故选:C.【点睛】此题考查三角形中位线定理,线段垂直平分线的性质,勾股定理逆定理,解题关键在于求出∠ACB=90°.6、D.【解析】试题解析:∵直线y=kx+b不经过第三象限,∴y=kx+b的图象经过第一、二、四象限或第二,四象限,∵直线必经过二、四象限,∴k<1.当图象过一、二四象限,直线与y轴正半轴相交时:b>1.当图象过原点时:b=1,∴b≥1,故选D.考点:一次函数图象与系数的关系.7、D【解析】分析:根据题意,当m≠0时,函数y=mx+m是一次函数,结合一次函数的性质,分m>0与m<0两种情况讨论,可得答案.详解:根据题意,当m≠0时,函数y=mx+m是一次函数,有两种情况:(1)当m>0时,其图象过一二三象限,D选项符合,(2)当m<0时,其图象过二三四象限,没有选项的图象符合,故选D.点睛:本题考查了一次函数的定义、图象和性质.熟练应用一次函数的性质对图象进行辨别是解题的关键.8、B【解析】试题解析:假如平行四边形ABCD是矩形,OA=OC,OB=OD,AC=BD,∴OA=OB=1.故选B.点睛:对角线相等的平行四边形是矩形.9、A【解析】

根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,

∠EOC=90°-∠1=90°-45°=45°,

又∵∠2=∠BOD+∠EOC-∠BOE,

∴∠2=60°+45°-90°=15°.

故选:A.【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.10、C【解析】因为,故选C.二、填空题(每小题3分,共24分)11、或【解析】

根据“左加右减,上加下减”的规律即可求得.【详解】解:∵抛物线向右平移1个单位∴抛物线解析式为或.【点睛】本题考查的是二次函数,熟练掌握二次函数的平移是解题的关键.12、14【解析】

先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.【详解】点A、B的坐标分别为、,,在中,,,,,由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,,平移的距离为,扫过面积,故答案为:14【点睛】本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.13、【解析】

把点A(﹣3,4)代入y=﹣3x+b求出点B的坐标,然后得到OB=5,利用A的坐标即可求出△AOB的面积.【详解】解:∵点A(﹣3,4)在一次函数y=﹣3x+b的图象上,∴9+b=4,∴b=-5,∵一次函数图象与y轴的交点的纵坐标就是一次函数的常数项上的数,∴点B的坐标为:(0,-5),∴OB=5,而A(﹣3,4),S△AOB=.故答案为:.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.14、(4,0)【解析】

根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.【详解】解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,∴点D的坐标为:(0,8),∴OD=8,∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,∴CD=5×2=10,∴AD=10,∵∠AOD=90°,OD=8,AD=10,∴AO=,∵AB=10,∴OB=10−AO=10−6=4,∴点B的坐标为(4,0),故答案为:(4,0)【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.15、菱形【解析】

由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.【详解】过点D作DE⊥AB于E,DF⊥BC于F.∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两把直尺的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故答案为:菱形.【点睛】本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.16、(3,0)【解析】

试题分析:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.【详解】根据点A的坐标即可确定正方形的边长,从而求得点C的坐标.∵正方形ABCD,点A的坐标是(-1,4)∴点C的坐标是(3,0).考点:坐标与图形性质.17、21【解析】

连接BD交AC于点O,已知AC即可求AO,菱形对角线互相垂直,所以△AOB为直角三角形,根据勾股定理即可求BO的值,即可求BD的值,根据AC、BD可以求菱形ABCD的面积.【详解】如图,连接BD交AC于点O.∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∵AC=8,∴AO=1.在Rt△AOB中,BO3,∴BD=2BO=6,∴菱形ABCD的面积为S6×8=21.故答案为:21.【点睛】本题考查了菱形的性质,勾股定理.根据勾股定理求BO的值是解题的关键.18、【解析】

先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即最小,可计算的值,从而得结论.【详解】∵四边形ABCD是矩形,∴∠B=90°,∵∠ACB=30°,BC=2,∴AB=2,AC=4,∵AG=,∴CG=,如图1,过G作MH⊥BC于H,交AD于M,Rt△CGH中,∠ACB=30°,∴GH=CG=,则点G到BC边的距离为,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH==,∴S△ADG,当最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴,∴,∴△ADG的面积的最小值为,故答案为:,.【点睛】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG的面积最小时点G的位置是解答此题的关键.三、解答题(共66分)19、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.20、(1)反比例函数为;一次函数解析式为y=﹣x﹣1;(2)x<﹣2或0<x<1.【解析】

(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可.【详解】解:(1)把A(﹣2,1)代入y=,得m=﹣2,即反比例函数为y=﹣,将B(1,n)代入y=﹣,解得n=﹣2,即B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b,得解得k=﹣1,b=﹣1,所以y=﹣x﹣1;(2)由图象可知:当一次函数的值>反比例函数的值时,x<﹣2或0<x<1.【点睛】此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.21、正方形【解析】分析:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;(2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角△EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角△BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.详解:(1)正方形;(2)①如图2,连结EF,在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°,在Rt△EGF和Rt△EDF中,∵EG=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴DF=FG,∴BF=BG+GF=AB+DF;②不妨假设AB=DC=,DF=,∴AD=BC=,由①得:BF=AB+DF∴BF=,CF=,在Rt△BCF中,由勾股定理得:∴,∴,∵,∴,即:CD=DF,∵CF=DF-DF,∴3CF=DF.点睛:此题属于四边形综合题,涉及的知识有:矩形的性质,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握图形的判定与性质是解本题的关键.22、(1)一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;(2)最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.【解析】分析:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依据2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元,解方程组求解即可.(2)设购买甲种树苗a棵,则购买乙种树苗(100-a)棵,总费用为w元,依据w随着a的增大而增大,可得当a取最小值时,w有最大值.详解:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依题意得,解得,∴一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;(2)设购买甲种树苗a棵,则购买乙种树苗(100-a)棵,总费用为w元,依题意得w=19a+15(100-a)=4a+1500,∵4>0,∴w随着a的增大而增大,∴当a取最小值时,w有最大值,∵100-a≤2a,∴a≥,a为整数,∴当a=34时,w最小=4×34+1500=1636(元),此时,100-34=66,∴最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.点睛:本题主要考查了一次函数的应用,解决问题的关键是将现实生活中的事件与数学思想联系起来,读懂题意列出函数关系式以及不等式.23、2.【解析】

利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可【详解】由题意,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论