版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省大丰市万盈初级中学八年级数学第二学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为()A.(﹣,2) B.(﹣3,) C.(﹣2,2) D.(﹣3,2)2.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.3.在直角三角形中,如果有一个角是30°,那么下列各比值中,是这个直角三角形的三边之比的是()A.1∶2∶3 B.2∶3∶4C.1∶4∶9 D.1∶∶24.用同一种规格的下列多边形瓷砖不能镶嵌成平面图案的是()A.三角形 B.正方形 C.正五边形 D.正六边形5.若实数a、b满足ab<0,则一次函数y=ax+b的图象可能是()A. B.C. D.6.矩形具有而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等7.对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根8.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)9.如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.1010.下列图形中,中心对称图形有()A.1个 B.2个 C.3 D.4个11.下列各组数据中,能够成为直角三角形三条边长的一组数据是().A. B. C. D.0.3,0.4,0.512.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形二、填空题(每题4分,共24分)13.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.14.分解因式:x2﹣7x=_____.15.如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________
.16.已知函数,则x取值范围是_____.17.已知,则__________.18.已知点,关于x轴对称,则________.三、解答题(共78分)19.(8分)阅读下列材料:关于x的方程:的解是,;即的解是;的解是,;的解是,;请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.20.(8分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.21.(8分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元;(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.22.(10分)如图,已知□ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).(1)直接写出顶点D的坐标(______,______),对角线的交点E的坐标(______,______);(2)求对角线BD的长;(3)是否存在t,使S△POQ=S▱ABCD,若存在,请求出的t值;不存在说明理由.(4)在整个运动过程中,PQ的中点到原点O的最短距离是______cm,(直接写出答案)23.(10分)解方程:x2﹣6x﹣4=1.24.(10分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.25.(12分)如图,直线m的表达式为y=﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)(1)求直线n的表达式.(2)求△ABC的面积.(3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是.26.如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE(1)求证:四边形BPEQ是菱形:(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【详解】∵直线y=-x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,
∴OC=3,OE=2,
∴CE=,∴点C的坐标为(-,2).
故选A.【点睛】考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.2、D【解析】
因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.3、D【解析】设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.解:如图所示,设30°角所对的直角边BC=a,
则AB=1BC=1a,
∴AC=,
∴三边之比为a:a:1a=1::1.
故选D.“点睛”本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.4、C【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐项判断即可.【详解】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能镶嵌成平面图案;B、正方形的每个内角是90°,能整除360°,即能镶嵌成平面图案;C、正五边形每个内角是(5-2)×180°÷5=108°,不能整除360°,故不能镶嵌成平面图案;D、正六边形每个内角是(6-2)×180°÷6=120°,能整除360°,即能镶嵌成平面图案,故选:C.【点睛】本题考查平面镶嵌,围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角即能镶嵌成平面图案.5、B【解析】分析:利用ab<0,得到a<0,b>0或b<0,a>0,然后根据一次函数图象与系数的关系进行判断.详解:因为ab<0,得到a<0,b>0或b<0,a>0,当a<0,b>0,图象经过一、二、四象限;当b<0,a>0,图象经过一、三、四象限,故选B.点睛:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).6、D【解析】
根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.【详解】解:由矩形对角线的特性可知:矩形的对角线相等.故选:D.【点睛】本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.7、B【解析】
原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8、A【解析】
根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.9、B【解析】
∵AD平分∠CAB,
∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.
∵BM+MN=B′M+MN,
∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,
∵AD垂直平分BB′,
∴AB′=AB=1,
∵∠B′AN′=41°,
∴△AB′N′是等腰直角三角形,
∴B′N′=1
∴BM+MN的最小值为1.
故选B.【点睛】本题考查轴对称-最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.10、B【解析】
绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形作出判断.【详解】等边三角形不是中心对称图形;平行四边形是中心对称图形;圆是中心对称图形;等腰梯形不是中心对称图形.故选:B.【点睛】此题考查中心对称图形,解题关键在于识别图形11、D【解析】
先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.【详解】A、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;
B、(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;
C、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;
D、0.32+0.42=0.52,即三角形是直角三角形,故本选项符合题意;
故选:D.【点睛】考查了三角形的三边关系定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.12、B【解析】在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.二、填空题(每题4分,共24分)13、1【解析】
先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.【详解】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=1(m).故答案是:1.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.14、x(x﹣7)【解析】
直接提公因式x即可.【详解】解:原式=x(x﹣7),故答案为:x(x﹣7).【点睛】本题主要考查了因式分解的运用,准确进行计算是解题的关键.15、1【解析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,
∴v快=v慢.
设两车相遇的时间为t,
根据函数图象可知:t•v慢=(t-2)•v快=276,
解得:t=6,v慢=46,
∴s=18v慢=18×46=1.
故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.16、x≥1.【解析】试题解析:根据题意得,x-1≥0,解得x≥1.考点:函数自变量的取值范围.17、1【解析】
直接利用二次根式非负性得出a,b的值,进而得出答案.【详解】∵,∴a=−1,b=1,∴−1+1=1.故答案为:1.【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.18、【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x轴对称,
∴,
∴.
故答案为:.【点睛】此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.三、解答题(共78分)19、猜想的解是,.验证见解析;,.
【解析】
此题为阅读分析题,解此题要注意认真审题,找到规律:的解为,.据规律解题即可.【详解】猜想的解是,.验证:当时,方程左边,方程右边,方程成立;当时,方程左边,方程右边,方程成立;的解是,;由得,,,,.【点睛】考查解分式方程,通过观察,比较,猜想,验证,可以得出结论.解决此题的关键是理解题意,认真审题,寻找规律.20、(1)y=-90x+1;(2)s=1-150x;(3)a=108(千米/时),作图见解析.【解析】
(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+1.设y=0时,求出x的值可知乙车到达终点所用的时间.【详解】(1)由图知y是x的一次函数,设y=kx+b∵图象经过点(0,1),(2,120),∴解得∴y=-90x+1.即y关于x的表达式为y=-90x+1.(2)由(1)得:甲车的速度为90千米/时,甲乙相距1千米.∴甲乙相遇用时为:1÷(90+60)=2,当0≤x≤2时,函数解析式为s=-150x+1,2<x≤时,s=150x-1<x≤5时,s=60x;(3)在s=-150x+1中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚20分钟到达,20分钟=小时,所以在y=-90x+1中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为+-2=(小时).乙车与甲车相遇后的速度a=(1-2×60)÷=108(千米/时).∴a=108(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.考点:一次函数的应用.21、(1)一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;(2)最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.【解析】分析:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依据2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元,解方程组求解即可.(2)设购买甲种树苗a棵,则购买乙种树苗(100-a)棵,总费用为w元,依据w随着a的增大而增大,可得当a取最小值时,w有最大值.详解:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依题意得,解得,∴一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;(2)设购买甲种树苗a棵,则购买乙种树苗(100-a)棵,总费用为w元,依题意得w=19a+15(100-a)=4a+1500,∵4>0,∴w随着a的增大而增大,∴当a取最小值时,w有最大值,∵100-a≤2a,∴a≥,a为整数,∴当a=34时,w最小=4×34+1500=1636(元),此时,100-34=66,∴最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.点睛:本题主要考查了一次函数的应用,解决问题的关键是将现实生活中的事件与数学思想联系起来,读懂题意列出函数关系式以及不等式.22、(1)16;6;4;3;(2)BD=6;(3)存在,t值为2;(4)此时PQ的中点到原点O的最短距离为.【解析】
(1)令x=0,y=0代入解析式得出A,C坐标,进而利用平行四边形的性质解答即可;(2)根据平行四边形的性质得出点B,D坐标,利用两点间距离解答即可;(3)利用三角形的面积公式和平行四边形的面积公式列出方程解答即可;(4)根据直角三角形斜边上中线等于斜边的一半可知,当PQ长度最短时,PQ的中点到原点O的距离最短解答即可.【详解】(1)把x=0代入y=+6,可得y=6,即A的坐标为(0,6),把y=0代入y=+6,可得:x=8,即点C的坐标为(8,0),根据平行四边形的性质可得:点B坐标为(-8,0),所以AD=BC=16,所以点D坐标为(16,6),点E为对角线的交点,故点E是AC的中点,E的坐标为(4,3),故答案为16;6;4;3;(2)因为B(-8,0)和D(16,6),∴BD=;(3)设时间为t,可得:OP=6-t,OQ=8-2t,∵S△POQ=S▱ABCD,当0<t≤4时,,解得:t1=2,t2=8(不合题意,舍去),当4<t≤6时,,△<0,不存在,答:存在S△POQ=S▱ABCD,此时t值为2;(4)∵,当t=时,PQ=,当PQ长度最短时,PQ的中点到原点O的距离最短,此时PQ的中点到原点O的最短距离为PQ==【点睛】此题是一次函数综合题,主要考查了平行四边形的性质,待定系数法,利用平行四边形的性质解答是解本题的关键.23、x1=3+,x2=3﹣.【解析】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.24、详见解析【解析】
首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形【点睛】此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.25、(1)n的表达式为;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).【解析】
(1)把C点坐标代入直线m,可求得t,再由待定系数法可求得直线n的解析式;
(2)可先求得B点坐标,则可求得AB,再由C点坐标可求得△ABC的面积;
(3)由面积相等可知点P到x轴的距离和点C到y轴的距离相等,可求得P点纵坐标,代入直线n的解析式可求得P点坐标.【详解】(1)∵直线m过C点,
∴-3=-3t+3,解得t=2,
∴C(2,-3),
设直线n的解析式为y=kx+b,
把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《班组安全教育课程》课件
- 单位管理制度集粹选集【员工管理】十篇
- 单位管理制度合并选集【人力资源管理】十篇
- 七年级下《皇帝的新装》苏教版-课件
- 单位管理制度范例汇编【职员管理篇】十篇
- 《标准化装修》课件
- 《项目管理手册》附件1至附件123
- (高频非选择题25题)第1单元 中华人民共和国的成立和巩固(解析版)
- 2019年高考语文试卷(新课标Ⅰ卷)(解析卷)
- 2015年高考语文试卷(新课标Ⅱ卷)(解析卷)
- JT-T-1078-2016道路运输车辆卫星定位系统视频通信协议
- 2024-2029年中国人工骨行业发展分析及发展前景与趋势预测研究报告
- 2024年高校教师资格证资格考试试题库及答案(各地真题)
- 扭亏增盈提质增效方案
- 侵权法智慧树知到期末考试答案章节答案2024年四川大学
- 期末考试卷2《心理健康与职业生涯》(解析卷)高一思想政治课(高教版2023基础模块)
- 年度安全生产投入台账(详细模板)
- 中医病历书写基本规范本
- 一年级带拼音阅读
- clsim100-32药敏试验标准2023中文版
- 前列腺癌手术后护理
评论
0/150
提交评论